Высокоскоростной удар — различия между версиями
Natalia (обсуждение | вклад) (→Случай 3) |
Natalia (обсуждение | вклад) (→Случай 3) |
||
Строка 85: | Строка 85: | ||
[[File:Пуля3.gif|500px|]] | [[File:Пуля3.gif|500px|]] | ||
+ | |||
+ | |||
+ | |||
+ | === См. также === | ||
+ | |||
+ | *[[Метод динамики частиц]] | ||
+ | *[[Механика дискретных сред]] | ||
+ | *[[Введение в механику дискретных сред]] | ||
+ | *[[Виртуальная лаборатория]] | ||
+ | *[[Курсовые_работы_по_ТОМДЧ:_2012-2013| Курсовые работы 2012-2013 учебного года]] | ||
+ | *[[Курсовые_работы_по_ТОМДЧ:_2013-2014| Курсовые работы 2013-2014 учебного года]] | ||
+ | *[[Курсовые_работы_по_ВМДС:_2014-2015 | Курсовые работы 2014-2015 учебного года]] | ||
+ | * [[ Курсовые_работы_по_ВМДС:_2016-2017 | Курсовые работы 2016-2017 учебного года]] | ||
+ | |||
+ | |||
+ | [[Category: Студенческие проекты]] | ||
+ | [[Category: Механика дискретных сред]] |
Версия 13:08, 11 декабря 2019
Курсовой проект по Механике дискретных сред
Исполнитель: Пальчиковская Наталия
Группа: 3630103/60101
Семестр: осень 2019
Содержание
Постановка задачи
Построить модель взаимодействия ударника и препятствия. Исследовать зависимость глубины проникания в преграду от скорости ударника.
Построение модели
Поскольку задача состоит в исследовании зависимости глубины проникания от скорости ударника, будем рассматривать поперечное сечение преграды. Пусть это сечение представляет собой двумерную область с треугольной кристаллической решеткой(рис.1). Ударник так же моделируем, как некоторую совокупность частиц. (Введенные обозначения показаны на рисунке 2)
Предположим, что все частицы взаимодействуют посредством потенциала Леннарда-Джонса.
Теоретическая сводка
Потенциал Леннарда-Джонса
Парный силовой потенциал взаимодействия. Определяется формулой:
где
- — расстояние между частицами,
- — энергия связи,
- — длина связи.
Потенциал является частным случаем потенциала Ми и не имеет безразмерных параметров.
Сила взаимодействия, соответствующая потенциалу Леннард-Джонса, вычисляется по формуле
Решение
В зависимости от скорости ударника возможны три результата взаимодействия.
- Случай 1:пуля не деформирует преграду
- Случай 2:пуля застревает в преграде
- Случай 3:пуля проходит насквозь преграды
При построении модели были приняты следующие значения параметров:
-шаг по времени
Тогда скорость диссоциации равна:
.
Случай 1
-скорость ударника
При малых скоростях ударника (не характерных для реальной пули) преграда не деформируется, пуля прилипает к стенке преграды.
Случай 2
При малых скоростях пули в результате взаимодействия деформируется препятствие, в нем застревает ударник.
Случай 3
При высоких скоростях ударника наблюдается прохождение пули насквозь препятствия.