Курсовые работы по ТОМДЧ: 2013-2014

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
Кафедра ТМ > Учебная работа > Курсы лекций > Введение в механику дискретных сред > Курсовые 2013-2014


Введение в механику дискретных сред: курсовые работы 2013-2014

Предмет: "Теоретические основы метода динамики частиц"

Лектор: Виталий Андреевич Кузькин

Группа: 40510

Учебный год: 2013-2014

Семестр: осень 2013

Моделирование распространения поперечных волн в двумерном стрежне[править]

Исполнители:: Степанов Алексей


Рассматривается стержень, имеющий толщину в 1 атом. Взаимодействие между атомами, находящимися на расстоянии меньшем, чем радиус обрезания, описывается законом

$ \underline{F}(r) = k \frac{\left|\underline{r}\right|-a_{0}}{\left|\underline{r}\right|}\underline{r} $

Здесь, $ k $ — жесткость связи, $ \underline{r} $ — радиус-вектор, соединяющий частицы и $ a_{0} $ равновесное расстояние. Радиус обрезания в работе выбран: $ r_{cut} = 1.5 $.

Было смоделировано несколько различных задач:

  • Отражение волны от свободного конца
  • Отражение волны от заделанного конца
  • Распространение волны без дисперсии
  • Распространение волны с дисперсией

Во всех этих задачах, граничный условия на другом конце выглядели так:

$ \begin{cases} y(t) = A\sin\left(\frac{2\pi t}{T}\right), t < \frac{T}{2}\\ F = 0, t > \frac{T}{2} \end{cases} $

Результаты:

  • Отражение волны от свободного конца

Svob conez.gif

  • Отражение волны от заделанного конца

Zadel.gif

Vawes.gif

Моделирование распространения продольных волн (MATLAB)[править]

Исполнители: Краморов Данил


Рассматривается бегущая по цепочке частиц продольная волна в разных постановках:

  • Волна отражается от свободного конца
  • Волна отражается от заделанного конца
  • Волна с периодическими граничными условиями
  • Волна с дисперсией

Под волной с дисперсией подразумевается рассеивание волны при уменьшении длины волны - по ходу движения за главным пиком вся явнее выражаются побочные.

Результаты:

  • Отражение волны от свободного конца

Wall s.gif

  • Отражение волны от заделанного конца

Free s.gif

  • Волна с периодическими граничными условиями

P periodic.gif

  • Волна с дисперсией

Dissipation s.gif

Моделирование цепочки частиц, анализ распределения скоростей[править]

Исполнители: Дзенушко Дайнис


Рассматривается цепочка частиц с периодичными граничными условиями. Задаются начальные скорости частиц, т.е. вводится начальная температура.
Исследуется распределение скоростей частиц от времени. В начальной конфигурации задается равномерное распределение скоростей.

Взаимодействие частиц описывается потенциалом Леннарда-Джонса который записывается в следующем виде:
$ U(r) = D \left[ \left(\frac{a}{r}\right)^{12} - \left(\frac{a}{r}\right)^{6} \right], $
r — расстояние между центрами частиц
D  — глубина потенциальной ямы
a — равновесное расстояние

Результаты:

  • 40000 частиц, без диссипаций, радиус обрезания a_cut = 1.4 a0 (слева) и 5.1 a0 (справа), максимальные начальные скорости v0 = 0.5 * vo / 6

Dainis Test Ndiss 2.gifDainis Test Ndiss 3.gif

  • 40000 частиц, с диссипацией B = 2.6*Bo/100(слева) и B = 5.2*Bo/100(справа), радиус обрезания a_cut = 1.4 a0, максимальные начальные скорости v0 = 0.5 * vo / 6

Dainis Test diss 6.gifDainis Test diss 7.gif

Моделирование выстрела из лука[править]

Исполнители: Фролова Ксения


Постановка задачи:
В данной работе моделируется процесс выстрела из лука с целью получения качественного анализа поведения рассматриваемой механической конструкции. Реализация происходит в среде разработки Code::Blocks.

В реальных моделях плечи лука являются упругими стержнями, а тетива – растяжимой нитью.

Рассматривается плоская задача. В построенной модели плечи лука состоят из двух слоев частиц, находящихся друг от друга на расстоянии, равном равновесному, а тетива - из одного. Снаряд (стрела) также состоит из одного слоя частиц. Для описания взаимодействия между частицами тетивы и стрелы используется потенциал Леннарда - Джонса (1), взаимодействие между остальными частицами определяется законом (2):
$ U(r) = 4\varepsilon \left[ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right], $ (1)
$ \underline{F}(r) = k \frac{\left|\underline{r}\right|-a_{0}}{\left|\underline{r}\right|}\underline{r} $ (2)
Где
$ k $жесткость связи
$ \underline{r} $радиус-вектор, соединяющий частицы
$ a_{0} $ - равновесное расстояние

Примечание: при расстоянии между частицами тетивы и стрелы, превышающим равновесное расстояние, взаимодействие между этими частицами отсутствует.

Радиус обрезания $ a_{cut} = 1.2 $; жесткость связи $ k = 2.0 $.</math>
Частицы, составляющие плечи лука, не взаимодействуют c

  • частицами тетивы (за исключением ушек – элемента тетивы, одеваемого на лук)
  • частицами стрелы

Плечи в недеформированном состоянии представляют собой полуокружность. При натянутой на лук тетиве конструкция находится в равновесии. Сила натяжения лука, приложенная к середине тетивы, задается статически – частица, находящаяся в середине тетивы, перемещается вдоль горизонтальной оси ox на величину $ s = -0.0012a $.
Начальная конфигурация лука представлена на рисунке 1.


Результат:

Обсуждение результатов и выводы:
Из полученных результатов видно, что при отпускании тетивы (в момент, когда сила натяжения лука перестает действовать, т.е. частица, являющаяся серединой тетивы, останавливается) энергия, накопленная в деформированных за счет оттягивания тетивы плечах, преобразуется в кинетическую энергию полета стрелы. За счет этого, в свою очередь, и происходит движение снаряда в сторону разгибания дуги, стремящейся вернуться в исходное состояние равновесия системы. Это соответствует принципу действия реальных конструкций.
Замечание:

  • Поскольку в модели не учитывается действие силы тяжести, стрела движется не по параболической траектории, как это происходит в реальности, а вдоль горизонтальной оси.

Потеря устойчивости стержня[править]

Исполнители:: Пшенов Антон


Рассматривается стержень состоящий из частиц взаимодействующих по потенциалу V-model, подвергающийся сжатию в квазистатической постановке. Граничные условия на концах соответсвуют заделке, тоесть перемещение и вращение крайних частиц равны нулю. Квазистатическая задача предпологает последовательное смещение каждой частицы с определенным интервалом по времени, тем самым обеспечивая сжатие стержня без возникновения значительных продольных волн.

При различных значениях скорости деформации наблюдается потеря устойчивости по разным формам.

В ходе моделирования замеряется сила действующая на крайнюю частицу, соответствующая нагрузке на стержень. При потере устойчивости наблюдается резкое падение этой силы означающее переход к другому равновесному состоянию.Полученное значение максимальной нагрузки сравнивается с введенной Эйлером критической силой, вычисляющейся по формуле:

$ P_{k} = \frac{n^{2}\cdot\pi^{2}\cdot EJ}{l^{2}} $

При устремлении скорости деформации к нулю было получено близкое к аналитическому значение критической нагрузки.

Аналогичную задачу можно поставить и для кручения стержня.


Моделирование пробивания пластины шаром[править]

Исполнители: Веренинов Игорь


Рассматривается деформируемый шар пробивающий пластину,толщиной в одну частицу.

Результаты:

  • 1000 частиц, радиус обрезания a_cut = 1.4 a0 максимальные начальные скорости v0 = 0.5 * vo / 6

IgorBall.gif



Моделирование откольного разрушения в двумерной постановке[править]

Исполнители: Симонов Роман


Рассматривается пластина ,которую ударяет тело размером меньше в 5 раз. При соударении наблюдается откол части пластины схожей по форме с ударяемым телом.



Результаты:

  • 2700 частиц, радиус обрезания a_cut = 1.4 a0

AN.gif

См. также[править]