Курсовые работы по ТОМДЧ: 2013-2014 — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Моделирование откольного разрушения в двумерной постановке)
м (См. также)
 
(не показано 11 промежуточных версий 4 участников)
Строка 1: Строка 1:
 +
[[Кафедра ТМ]] > [[Кафедра ТМ#Учебная работа|Учебная работа]] > [[Курсы лекций]] > [[Введение в механику дискретных сред]] > '''Курсовые 2013-2014''' <HR>
 +
{{DISPLAYTITLE:<span style="display:none">{{FULLPAGENAME}}</span>}}
 +
 +
<font size="5"> Введение в механику дискретных сред: курсовые работы 2013-2014 </font>
 +
 
'''Предмет:''' "[[Теоретические основы метода динамики частиц]]"
 
'''Предмет:''' "[[Теоретические основы метода динамики частиц]]"
  
Строка 129: Строка 134:
 
''Замечание: <br>
 
''Замечание: <br>
 
* ''Поскольку в модели не учитывается действие силы тяжести, стрела движется не по параболической траектории, как это происходит в реальности, а вдоль горизонтальной оси.''  <br>
 
* ''Поскольку в модели не учитывается действие силы тяжести, стрела движется не по параболической траектории, как это происходит в реальности, а вдоль горизонтальной оси.''  <br>
 
== Отрицательное тепловое расширение ==
 
 
''' Исполнители:''': [[Ковалев Олег]]
 
----
 
 
Рассматривается система сферических твердых тел, образующих плоскую квадратную кристаллическую решетку. Предполагается, что в системе присутствуют только тепловые перемещения и вращения частиц. Приводятся выражения для напряжений возникающих в системе; потенциальной энергии; кинетической поступательной и вращательной энергий. Проводится сравнение с численным моделированием.
 
 
Введены следующие обозначения:
 
<br>
 
<math>k</math> — ''жесткость связи''<br>
 
<math>\underline{R_a}</math> — ''радиус частицы''<br>
 
<math>\underline{A_a}</math> — ''радиус-вектор, соединяющий рассматриваемую частицу с соседней''<br>
 
<math>\underline{a_0}</math> — ''равновесное расстояние''<br>
 
<math>\underline{L_0}</math> — ''Расстояние между поверхностями частиц (текущая длина пружинки)''<br>
 
<math>V</math> — ''элементарный объем решетки''<br>
 
<math>\phi</math> — ''потенциал взаимодействия''<br>
 
 
Выражение для напряжений:
 
 
 
Выражение для потенциальной энергии:
 
 
 
Выражение для кинетической энергии:
 
 
Стоит отметить, что при стремлении радиуса частиц к 0, приведенные выше формулы сводятся к формулам, полученным в работе [1] для системы материальных точек.
 
 
Если выбрать в качестве потенциала взаимодействия упругую пружинку и устремить к нулю равновесное расстояние, то приведенные выше формулы сведутся к следующим:
 
 
Для данной системы было проведено численное моделирование и получено, что напряжение отличается меньше чем на 1%процент, потенциальная энергия на 1%, кинетическая поступательная и вращательная больше чем на 20%. Стоит отметить, что в эксперименте получено, что кинетическая тепловая энергия равна потенциальной тепловой энергии.
 
<br>
 
  
 
== Потеря устойчивости стержня ==
 
== Потеря устойчивости стержня ==
Строка 219: Строка 192:
  
 
* 2700 частиц,  радиус обрезания a_cut = 1.4 a0<br>
 
* 2700 частиц,  радиус обрезания a_cut = 1.4 a0<br>
[[Файл:animation.gif]]
+
[[Файл:AN.gif]]
  
 
== См. также ==
 
== См. также ==
Строка 227: Строка 200:
 
*[[Теоретические_основы_метода_динамики_частиц]]
 
*[[Теоретические_основы_метода_динамики_частиц]]
 
*[[Курсовые_работы_по_ТОМДЧ:_2011-2012| Курсовые работы 2011-2012 учебного года]]
 
*[[Курсовые_работы_по_ТОМДЧ:_2011-2012| Курсовые работы 2011-2012 учебного года]]
 
+
*[[Курсовые_работы_по_ТОМДЧ:_2012-2013| Курсовые работы 2012-2013 учебного года]]
  
  
 
[[Category: Студенческие проекты]]
 
[[Category: Студенческие проекты]]
 
[[Category: Механика дискретных сред]]
 
[[Category: Механика дискретных сред]]

Текущая версия на 08:38, 31 августа 2015

Кафедра ТМ > Учебная работа > Курсы лекций > Введение в механику дискретных сред > Курсовые 2013-2014


Введение в механику дискретных сред: курсовые работы 2013-2014

Предмет: "Теоретические основы метода динамики частиц"

Лектор: Виталий Андреевич Кузькин

Группа: 40510

Учебный год: 2013-2014

Семестр: осень 2013

Моделирование распространения поперечных волн в двумерном стрежне[править]

Исполнители:: Степанов Алексей


Рассматривается стержень, имеющий толщину в 1 атом. Взаимодействие между атомами, находящимися на расстоянии меньшем, чем радиус обрезания, описывается законом

[math] \underline{F}(r) = k \frac{\left|\underline{r}\right|-a_{0}}{\left|\underline{r}\right|}\underline{r} [/math]

Здесь, [math]k[/math] — жесткость связи, [math]\underline{r}[/math] — радиус-вектор, соединяющий частицы и [math]a_{0}[/math] равновесное расстояние. Радиус обрезания в работе выбран: [math] r_{cut} = 1.5 [/math].

Было смоделировано несколько различных задач:

  • Отражение волны от свободного конца
  • Отражение волны от заделанного конца
  • Распространение волны без дисперсии
  • Распространение волны с дисперсией

Во всех этих задачах, граничный условия на другом конце выглядели так:

[math] \begin{cases} y(t) = A\sin\left(\frac{2\pi t}{T}\right), t \lt \frac{T}{2}\\ F = 0, t \gt \frac{T}{2} \end{cases} [/math]

Результаты:

  • Отражение волны от свободного конца

Svob conez.gif

  • Отражение волны от заделанного конца

Zadel.gif

Vawes.gif

Моделирование распространения продольных волн (MATLAB)[править]

Исполнители: Краморов Данил


Рассматривается бегущая по цепочке частиц продольная волна в разных постановках:

  • Волна отражается от свободного конца
  • Волна отражается от заделанного конца
  • Волна с периодическими граничными условиями
  • Волна с дисперсией

Под волной с дисперсией подразумевается рассеивание волны при уменьшении длины волны - по ходу движения за главным пиком вся явнее выражаются побочные.

Результаты:

  • Отражение волны от свободного конца

Wall s.gif

  • Отражение волны от заделанного конца

Free s.gif

  • Волна с периодическими граничными условиями

P periodic.gif

  • Волна с дисперсией

Dissipation s.gif

Моделирование цепочки частиц, анализ распределения скоростей[править]

Исполнители: Дзенушко Дайнис


Рассматривается цепочка частиц с периодичными граничными условиями. Задаются начальные скорости частиц, т.е. вводится начальная температура.
Исследуется распределение скоростей частиц от времени. В начальной конфигурации задается равномерное распределение скоростей.

Взаимодействие частиц описывается потенциалом Леннарда-Джонса который записывается в следующем виде:
[math]U(r) = D \left[ \left(\frac{a}{r}\right)^{12} - \left(\frac{a}{r}\right)^{6} \right],[/math]
r — расстояние между центрами частиц
D  — глубина потенциальной ямы
a — равновесное расстояние

Результаты:

  • 40000 частиц, без диссипаций, радиус обрезания a_cut = 1.4 a0 (слева) и 5.1 a0 (справа), максимальные начальные скорости v0 = 0.5 * vo / 6

Dainis Test Ndiss 2.gifDainis Test Ndiss 3.gif

  • 40000 частиц, с диссипацией B = 2.6*Bo/100(слева) и B = 5.2*Bo/100(справа), радиус обрезания a_cut = 1.4 a0, максимальные начальные скорости v0 = 0.5 * vo / 6

Dainis Test diss 6.gifDainis Test diss 7.gif

Моделирование выстрела из лука[править]

Исполнители: Фролова Ксения


Постановка задачи:
В данной работе моделируется процесс выстрела из лука с целью получения качественного анализа поведения рассматриваемой механической конструкции. Реализация происходит в среде разработки Code::Blocks.

В реальных моделях плечи лука являются упругими стержнями, а тетива – растяжимой нитью.

Рассматривается плоская задача. В построенной модели плечи лука состоят из двух слоев частиц, находящихся друг от друга на расстоянии, равном равновесному, а тетива - из одного. Снаряд (стрела) также состоит из одного слоя частиц. Для описания взаимодействия между частицами тетивы и стрелы используется потенциал Леннарда - Джонса (1), взаимодействие между остальными частицами определяется законом (2):
[math] U(r) = 4\varepsilon \left[ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right], [/math] (1)
[math] \underline{F}(r) = k \frac{\left|\underline{r}\right|-a_{0}}{\left|\underline{r}\right|}\underline{r} [/math] (2)
Где
[math]k[/math]жесткость связи
[math]\underline{r}[/math]радиус-вектор, соединяющий частицы
[math]a_{0}[/math] - равновесное расстояние

Примечание: при расстоянии между частицами тетивы и стрелы, превышающим равновесное расстояние, взаимодействие между этими частицами отсутствует.

Радиус обрезания [math] a_{cut} = 1.2 [/math]; жесткость связи [math]k = 2.0[/math].</math>
Частицы, составляющие плечи лука, не взаимодействуют c

  • частицами тетивы (за исключением ушек – элемента тетивы, одеваемого на лук)
  • частицами стрелы

Плечи в недеформированном состоянии представляют собой полуокружность. При натянутой на лук тетиве конструкция находится в равновесии. Сила натяжения лука, приложенная к середине тетивы, задается статически – частица, находящаяся в середине тетивы, перемещается вдоль горизонтальной оси ox на величину [math] s = -0.0012a [/math].
Начальная конфигурация лука представлена на рисунке 1.


Результат:

Обсуждение результатов и выводы:
Из полученных результатов видно, что при отпускании тетивы (в момент, когда сила натяжения лука перестает действовать, т.е. частица, являющаяся серединой тетивы, останавливается) энергия, накопленная в деформированных за счет оттягивания тетивы плечах, преобразуется в кинетическую энергию полета стрелы. За счет этого, в свою очередь, и происходит движение снаряда в сторону разгибания дуги, стремящейся вернуться в исходное состояние равновесия системы. Это соответствует принципу действия реальных конструкций.
Замечание:

  • Поскольку в модели не учитывается действие силы тяжести, стрела движется не по параболической траектории, как это происходит в реальности, а вдоль горизонтальной оси.

Потеря устойчивости стержня[править]

Исполнители:: Пшенов Антон


Рассматривается стержень состоящий из частиц взаимодействующих по потенциалу V-model, подвергающийся сжатию в квазистатической постановке. Граничные условия на концах соответсвуют заделке, тоесть перемещение и вращение крайних частиц равны нулю. Квазистатическая задача предпологает последовательное смещение каждой частицы с определенным интервалом по времени, тем самым обеспечивая сжатие стержня без возникновения значительных продольных волн.

При различных значениях скорости деформации наблюдается потеря устойчивости по разным формам.

В ходе моделирования замеряется сила действующая на крайнюю частицу, соответствующая нагрузке на стержень. При потере устойчивости наблюдается резкое падение этой силы означающее переход к другому равновесному состоянию.Полученное значение максимальной нагрузки сравнивается с введенной Эйлером критической силой, вычисляющейся по формуле:

[math] P_{k} = \frac{n^{2}\cdot\pi^{2}\cdot EJ}{l^{2}} [/math]

При устремлении скорости деформации к нулю было получено близкое к аналитическому значение критической нагрузки.

Аналогичную задачу можно поставить и для кручения стержня.


Моделирование пробивания пластины шаром[править]

Исполнители: Веренинов Игорь


Рассматривается деформируемый шар пробивающий пластину,толщиной в одну частицу.

Результаты:

  • 1000 частиц, радиус обрезания a_cut = 1.4 a0 максимальные начальные скорости v0 = 0.5 * vo / 6

IgorBall.gif



Моделирование откольного разрушения в двумерной постановке[править]

Исполнители: Симонов Роман


Рассматривается пластина ,которую ударяет тело размером меньше в 5 раз. При соударении наблюдается откол части пластины схожей по форме с ударяемым телом.



Результаты:

  • 2700 частиц, радиус обрезания a_cut = 1.4 a0

AN.gif

См. также[править]