Вынужденные колебания цепочки в вязкой среде

Материал из Department of Theoretical and Applied Mechanics
Версия от 19:48, 22 января 2020; Kroiver (обсуждение | вклад) (Визуализация)

Перейти к: навигация, поиск

Курсовой проект по Механике дискретных сред

Исполнитель: Шпетный Даниил

Группа: 3630103/60101

Семестр: осень 2019


Постановка задачи

Исследовать вынужденные колебания в вязкой среде. Построить график перемещений частиц от времени.

Построение модели

Процесс моделируется как одномерные колебания цепочки частиц.

Теоретическая сводка

Парное взаимодействие определяется формулой:

[math]F = c(x_{k+1}-x_{k}-1)[/math]

где [math]F[/math] — сила взаимодействия, [math]c[/math] — жесткость связи, [math]x_k[/math] — перемещение частицы, [math]k[/math] — номер частицы.

Уравнение скорости частиц [math]k[/math] и [math]k+1[/math]:

[math]V_{k}=\frac{F}{m}dt-2μV_{k}[/math]
[math]V_{k+1}=-\frac{F}{m}dt-2μV_{k+1}[/math]

где [math]F[/math] — сила взаимодействия, [math]m[/math] — масса частицы, [math]μ[/math] — коэффициент вязкости, [math]V_{k}[/math] — скорость частицы.

Граничные и начальные условия

Начальные условия нулевые Периодические граничные условия:

[math]V_{N}=c(x_{1}+aN-x_{N}-1)\frac{dt}{m}-2μV_{N}+Qcos(ωt)[/math]
[math]V_{1}=-c(x_{1}+aN-x_{N}-1)\frac{dt}{m}-2μV_{1}[/math]

где [math]Q[/math] — амплитуда возмущающей силы, [math]ω[/math] — частота возмущающей силы, [math]N[/math] — количество частиц.

Визуализация

MDS.gif

См. также