Вынужденные колебания цепочки в вязкой среде — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Теоретическая сводка)
(Теоретическая сводка)
Строка 25: Строка 25:
 
Уравнение скорости частиц <math>k</math> и <math>k+1</math>:
 
Уравнение скорости частиц <math>k</math> и <math>k+1</math>:
 
:<math>V_{k}=\frac{F}{m}dt-2μV_{k}</math>
 
:<math>V_{k}=\frac{F}{m}dt-2μV_{k}</math>
:<math>V_{k+1}=\frac{-F}{m}dt-2μV_{k+1}</math>
+
:<math>V_{k+1}=-\frac{F}{m}dt-2μV_{k+1}</math>
  
 
где <math>F</math> — сила взаимодействия, <math>m</math> — масса частицы, <math>μ</math> — коэффициент вязкости, <math>V_{k}</math> — скорость частицы.
 
где <math>F</math> — сила взаимодействия, <math>m</math> — масса частицы, <math>μ</math> — коэффициент вязкости, <math>V_{k}</math> — скорость частицы.

Версия 19:04, 22 января 2020

Курсовой проект по Механике дискретных сред

Исполнитель: Шпетный Даниил

Группа: 3630103/60101

Семестр: осень 2019


Постановка задачи

Исследовать вынужденные колебания в вязкой среде. Построить график перемещений частиц от времени.

Построение модели

Процесс моделируется как одномерные колебания цепочки частиц. Уравнение взаимодействия : (строчка с F)

Теоретическая сводка

Парное взаимодействие определяется формулой:

[math]F = c(x_{k+1}-x_{k}-1)[/math]

где [math]F[/math] — сила взаимодействия, [math]c[/math] — жесткость связи, [math]x_k[/math] — перемещение частицы, [math]k[/math] — номер частицы.

Уравнение скорости частиц [math]k[/math] и [math]k+1[/math]:

[math]V_{k}=\frac{F}{m}dt-2μV_{k}[/math]
[math]V_{k+1}=-\frac{F}{m}dt-2μV_{k+1}[/math]

где [math]F[/math] — сила взаимодействия, [math]m[/math] — масса частицы, [math]μ[/math] — коэффициент вязкости, [math]V_{k}[/math] — скорость частицы.

Решение

При построении модели были приняты следующие значения параметров:

[math]a=1[/math]

[math]D=1[/math]

[math]m=1[/math]

[math]dt=0.001[/math] -шаг по времени

Пуля3.gif


См. также