Математическая модель лука — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Эксперимент)
(Эксперимент и обработка полученных данных)
Строка 34: Строка 34:
 
==Модель лука с абсолютно жесткими стержнями==
 
==Модель лука с абсолютно жесткими стержнями==
 
==Модель лука с упругими стержнями==
 
==Модель лука с упругими стержнями==
==Эксперимент и обработка полученных данных==
+
==Эксперимент==
 
* Эксперимент с классическим луком
 
* Эксперимент с классическим луком
 
Эксперимент проводился с прямым симметричным луком. Материал плеч – стеклотекстолит<br>
 
Эксперимент проводился с прямым симметричным луком. Материал плеч – стеклотекстолит<br>
 
[[Файл:Bow.jpg|200px|thumb|left|]]
 
[[Файл:Bow.jpg|200px|thumb|left|]]
 
Ход выполнения эксперимента заключался в следующем: рукоять лука фиксировалась, затем к середине тетивы крепился груз известной массы, после чего с помощью рулетки измерялось значение смещения тетивы от положения, когда она не деформирована. Таким образом, снималась зависимость массы подвешиваемого груза от смещения тетивы, которая для дальнейших расчетов преобразовывалась в зависимость силы натяжения лука от указанного перемещения. <br>
 
Ход выполнения эксперимента заключался в следующем: рукоять лука фиксировалась, затем к середине тетивы крепился груз известной массы, после чего с помощью рулетки измерялось значение смещения тетивы от положения, когда она не деформирована. Таким образом, снималась зависимость массы подвешиваемого груза от смещения тетивы, которая для дальнейших расчетов преобразовывалась в зависимость силы натяжения лука от указанного перемещения. <br>
 +
==Результаты==
 +
Для сравнения динамических кривых, построенных для двух моделей, описывающих лук, а также для определения расхождения их с динамической кривой, построенной по экспериментальным данным, учитывалось, что такие параметры лука, как длина плеча, а также начальное смещение тетивы в обеих моделях равны соответствующим параметрам реальной конструкции. Также было принято, что совпадают значения максимальной величины силы натяжения лука. <br>
 +
Величина жесткости спиральной пружины в модели лука с абсолютно жесткими плечами определялась, исходя из соображений о том, что модель должна как можно точнее описывать реальную конструкцию.С этой целью использовался метод наименьших квадратов. Оказалось, что ''с'' = 23.169 Нм.
  
 
==Заключение==
 
==Заключение==
 
==Список использованных источников==
 
==Список использованных источников==

Версия 00:32, 15 июня 2014

БАКАЛАВРСКАЯ РАБОТА
Автор работы: К.П. Фролова
Руководитель: канд. физ.-мат. наук, доцент О.С. Лобода

Предисловие

Данная работа включает в себя результаты, полученные в курсовом проекте по теоретической механике, а также является продолжением освещенной в нем темы моделирования конструкции лука.

Введение

Лук является одним из первых механических устройств, созданных человеком. В наши дни такое оружие, как лук, все еще остается популярным. Современные спортивные луки используются в соревнованиях, в том числе, в Олимпийских играх. Большим спросом пользуются и классические охотничьи луки.
Б.А. Виноградский в 2004 году проанализировал состояние и перспективы развития стрельбы из лука в мире по результатам XXVIII Олимпийских игр в Афинах. Резюмируя, он отметил, что развитие стрельбы из лука как вида спорта на международной арене можно оценить как стабильное, а также подчеркнул, что отмечается постепенный рост спортивного результата, ужесточение спортивной борьбы и повышение конкуренции.
Краткий экскурс на тему основных понятий и принципов, касающихся темы стрельбы из лука, приведен в курсовом проекте по теоретической механике.

Block.png



В данной работе обратим внимание на принципиальное различие между классическим и блочным луком. Заключается оно в том, что в блочном луке плечи непосредственно изгибаются не тетивой, а тросами.
При оттягивании тетивы она сматывается с блока большего радиуса и прокручивает его. На блок меньшего радиуса, вращающийся с ним синхронно, в это время наматывается силовой трос, соединенный с противоположным плечом. Таким образом, трос, наматываемый на верхний блок, сгибает нижнее плечо лука, а трос, наматываемый на нижний блок, сгибает верхнее плечо лука.
Если с конструкции снять тросы и при этом оттягивать тетиву, то плечи не согнутся.



И.Ф. Заневский отметил «эволюцию» моделей, созданных рядом ученых. Так, С.Х. Хикман описал лук моделью, в которой плечи являются прямыми и недеформируемыми, между которыми располагаются идеальные шарниры с пружиной Архимеда, а концы которых соединены нерастяжимой тетивой. Б.В. Куи и Дж.А. Спаренберг в своей модели рассмотрели плечо лука в качестве упругой полосы. Среди российских работ в области создания математической модели лука можно подчеркнуть работу А.А. Лужина, который смоделировал плечи лука пластинами Кирхгофа – Лява, тетиву - нерастяжимой нитью, а стрелу – сосредоточенной массой. При этом задача решалась в линейной постановке для малых прогибов плеч. Разработка модели блочного лука представляет наибольший интерес в современном мире. Тем не менее, для того, чтобы перейти к ней, необходимо понимание характера процессов, происходящих в классических луках. Особое внимание уделяется азиатскому луку. Особенностью его конструкции являются негнущиеся концы плеч, называемые «ушами», благодаря которым усилие натяжения лука резко увеличивается в начале и гораздо более плавно - в конце. Модель такого лука описали в своей работе Б.В.Куи и Дж.А. Спаренберг и показали, что конструкция позволяет запасти больше энергии. Математическую модель блочного лука предложил Дж.Л. Парк.

Постановка задачи

Целью является описание механической конструкции лука с помощью математического аппарата. В рамках данной работы внимание уделяется двум моделям. В одном случае плечи лука рассматриваются как абсолютно жесткие стержни, в другом у них имеется характеристика на изгиб.
Необходимо:

  • Найти зависимость силы натяжения лука от смещения тетивы, построить динамические кривые
  • Найти зависимости энергии, накапливаемой в конструкции, от смещения тетивы
  • Найти зависимости начальной скорости стрелы от смещения тетивы
  • Провести сравнение полученных результатов с экспериментальными данными

Также в рамках работы нужно продемонстрировать эффективность применения системы эксцентричных блоков в конструкции лука. Для этого

  • Разобрать в теории принцип действия конструкции
  • Построить зависимость усилия натяга от смещения тетивы на основании экспериментальных данных

Модель лука с абсолютно жесткими стержнями

Модель лука с упругими стержнями

Эксперимент

  • Эксперимент с классическим луком

Эксперимент проводился с прямым симметричным луком. Материал плеч – стеклотекстолит

Bow.jpg

Ход выполнения эксперимента заключался в следующем: рукоять лука фиксировалась, затем к середине тетивы крепился груз известной массы, после чего с помощью рулетки измерялось значение смещения тетивы от положения, когда она не деформирована. Таким образом, снималась зависимость массы подвешиваемого груза от смещения тетивы, которая для дальнейших расчетов преобразовывалась в зависимость силы натяжения лука от указанного перемещения.

Результаты

Для сравнения динамических кривых, построенных для двух моделей, описывающих лук, а также для определения расхождения их с динамической кривой, построенной по экспериментальным данным, учитывалось, что такие параметры лука, как длина плеча, а также начальное смещение тетивы в обеих моделях равны соответствующим параметрам реальной конструкции. Также было принято, что совпадают значения максимальной величины силы натяжения лука.
Величина жесткости спиральной пружины в модели лука с абсолютно жесткими плечами определялась, исходя из соображений о том, что модель должна как можно точнее описывать реальную конструкцию.С этой целью использовался метод наименьших квадратов. Оказалось, что с = 23.169 Нм.

Заключение

Список использованных источников