Курсовые работы по ТОМДЧ: 2013-2014 — различия между версиями
Kuzkin (обсуждение | вклад) м |
Kuzkin (обсуждение | вклад) (→Отрицательное тепловое расширение) |
||
Строка 134: | Строка 134: | ||
''Замечание: <br> | ''Замечание: <br> | ||
* ''Поскольку в модели не учитывается действие силы тяжести, стрела движется не по параболической траектории, как это происходит в реальности, а вдоль горизонтальной оси.'' <br> | * ''Поскольку в модели не учитывается действие силы тяжести, стрела движется не по параболической траектории, как это происходит в реальности, а вдоль горизонтальной оси.'' <br> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Потеря устойчивости стержня == | == Потеря устойчивости стержня == |
Версия 18:09, 11 сентября 2014
Кафедра ТМ > Учебная работа > Курсы лекций > Введение в механику дискретных сред > Курсовые 2013-2014{{#SecurityShowAllTabsGroup:staff}}
Введение в механику дискретных сред: курсовые работы 2013-2014
Предмет: "Теоретические основы метода динамики частиц"
Лектор: Виталий Андреевич Кузькин
Группа: 40510
Учебный год: 2013-2014
Семестр: осень 2013
Содержание
- 1 Моделирование распространения поперечных волн в двумерном стрежне
- 2 Моделирование распространения продольных волн (MATLAB)
- 3 Моделирование цепочки частиц, анализ распределения скоростей
- 4 Моделирование выстрела из лука
- 5 Потеря устойчивости стержня
- 6 Моделирование пробивания пластины шаром
- 7 Моделирование откольного разрушения в двумерной постановке
- 8 См. также
Моделирование распространения поперечных волн в двумерном стрежне
Исполнители:: Степанов Алексей
Рассматривается стержень, имеющий толщину в 1 атом. Взаимодействие между атомами, находящимися на расстоянии меньшем, чем радиус обрезания, описывается законом
Здесь,
— жесткость связи, — радиус-вектор, соединяющий частицы и равновесное расстояние. Радиус обрезания в работе выбран: .Было смоделировано несколько различных задач:
- Отражение волны от свободного конца
- Отражение волны от заделанного конца
- Распространение волны без дисперсии
- Распространение волны с дисперсией
Во всех этих задачах, граничный условия на другом конце выглядели так:
Результаты:
- Отражение волны от свободного конца
- Отражение волны от заделанного конца
- Распространение волны с дисперсией
- Соударение двух встречных волн
Моделирование распространения продольных волн (MATLAB)
Исполнители: Краморов Данил
Рассматривается бегущая по цепочке частиц продольная волна в разных постановках:
- Волна отражается от свободного конца
- Волна отражается от заделанного конца
- Волна с периодическими граничными условиями
- Волна с дисперсией
Под волной с дисперсией подразумевается рассеивание волны при уменьшении длины волны - по ходу движения за главным пиком вся явнее выражаются побочные.
Результаты:
- Отражение волны от свободного конца
- Отражение волны от заделанного конца
- Волна с периодическими граничными условиями
- Волна с дисперсией
Моделирование цепочки частиц, анализ распределения скоростей
Исполнители: Дзенушко Дайнис
Рассматривается цепочка частиц с периодичными граничными условиями. Задаются начальные скорости частиц, т.е. вводится начальная температура.
Исследуется распределение скоростей частиц от времени. В начальной конфигурации задается равномерное распределение скоростей.
Взаимодействие частиц описывается потенциалом Леннарда-Джонса который записывается в следующем виде:
r — расстояние между центрами частиц
D — глубина потенциальной ямы
a — равновесное расстояние
Результаты:
- 40000 частиц, без диссипаций, радиус обрезания a_cut = 1.4 a0 (слева) и 5.1 a0 (справа), максимальные начальные скорости v0 = 0.5 * vo / 6
- 40000 частиц, с диссипацией B = 2.6*Bo/100(слева) и B = 5.2*Bo/100(справа), радиус обрезания a_cut = 1.4 a0, максимальные начальные скорости v0 = 0.5 * vo / 6
Моделирование выстрела из лука
Исполнители: Фролова Ксения
Постановка задачи:
В данной работе моделируется процесс выстрела из лука с целью получения качественного анализа поведения рассматриваемой механической конструкции. Реализация происходит в среде разработки Code::Blocks.
В реальных моделях плечи лука являются упругими стержнями, а тетива – растяжимой нитью.
Рассматривается плоская задача. В построенной модели плечи лука состоят из двух слоев частиц, находящихся друг от друга на расстоянии, равном равновесному, а тетива - из одного. Снаряд (стрела) также состоит из одного слоя частиц. Для описания взаимодействия между частицами тетивы и стрелы используется потенциал Леннарда - Джонса (1), взаимодействие между остальными частицами определяется законом (2):
(1)
(2)
Где
— жесткость связи
— радиус-вектор, соединяющий частицы
- равновесное расстояние
Примечание: при расстоянии между частицами тетивы и стрелы, превышающим равновесное расстояние, взаимодействие между этими частицами отсутствует.
Радиус обрезания
Частицы, составляющие плечи лука, не взаимодействуют c
- частицами тетивы (за исключением ушек – элемента тетивы, одеваемого на лук)
- частицами стрелы
Плечи в недеформированном состоянии представляют собой полуокружность. При натянутой на лук тетиве конструкция находится в равновесии.
Сила натяжения лука, приложенная к середине тетивы, задается статически – частица, находящаяся в середине тетивы, перемещается вдоль горизонтальной оси ox на величину
Начальная конфигурация лука представлена на рисунке 1.
Результат:
Обсуждение результатов и выводы:
Из полученных результатов видно, что при отпускании тетивы (в момент, когда сила натяжения лука перестает действовать, т.е. частица, являющаяся серединой тетивы, останавливается) энергия, накопленная в деформированных за счет оттягивания тетивы плечах, преобразуется в кинетическую энергию полета стрелы. За счет этого, в свою очередь, и происходит движение снаряда в сторону разгибания дуги, стремящейся вернуться в исходное состояние равновесия системы. Это соответствует принципу действия реальных конструкций.
Замечание:
- Поскольку в модели не учитывается действие силы тяжести, стрела движется не по параболической траектории, как это происходит в реальности, а вдоль горизонтальной оси.
Потеря устойчивости стержня
Исполнители:: Пшенов Антон
Рассматривается стержень состоящий из частиц взаимодействующих по потенциалу V-model, подвергающийся сжатию в квазистатической постановке. Граничные условия на концах соответсвуют заделке, тоесть перемещение и вращение крайних частиц равны нулю. Квазистатическая задача предпологает последовательное смещение каждой частицы с определенным интервалом по времени, тем самым обеспечивая сжатие стержня без возникновения значительных продольных волн.
При различных значениях скорости деформации наблюдается потеря устойчивости по разным формам.
В ходе моделирования замеряется сила действующая на крайнюю частицу, соответствующая нагрузке на стержень. При потере устойчивости наблюдается резкое падение этой силы означающее переход к другому равновесному состоянию.Полученное значение максимальной нагрузки сравнивается с введенной Эйлером критической силой, вычисляющейся по формуле:
При устремлении скорости деформации к нулю было получено близкое к аналитическому значение критической нагрузки.
Аналогичную задачу можно поставить и для кручения стержня.
Моделирование пробивания пластины шаром
Исполнители: Веренинов Игорь
Рассматривается деформируемый шар пробивающий пластину,толщиной в одну частицу.
Результаты:
- 1000 частиц, радиус обрезания a_cut = 1.4 a0 максимальные начальные скорости v0 = 0.5 * vo / 6
Моделирование откольного разрушения в двумерной постановке
Исполнители: Симонов Роман
Рассматривается пластина ,которую ударяет тело размером меньше в 5 раз. При соударении наблюдается откол части пластины схожей по форме с ударяемым телом.
Результаты:
- 2700 частиц, радиус обрезания a_cut = 1.4 a0