Распространение тепла в гармоническом одномерном кристалле — различия между версиями
Строка 78: | Строка 78: | ||
* [[А.М. Кривцов]]. '''Особенности термомеханических процессов в сверхчистых материалах.''' [http://ruscongrmech2015.ru/ XI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики], 2015, Казань. Доклад: [[Медиа: Krivtsov_2015_08_22_Kazan_10_updated_151010_.pdf|pdf: 2768Kb]] | * [[А.М. Кривцов]]. '''Особенности термомеханических процессов в сверхчистых материалах.''' [http://ruscongrmech2015.ru/ XI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики], 2015, Казань. Доклад: [[Медиа: Krivtsov_2015_08_22_Kazan_10_updated_151010_.pdf|pdf: 2768Kb]] | ||
− | == | + | == Страницы по теме == |
− | * [[ | + | * [[Проект "Термокристалл"]] |
+ | * [[Нарушение закона Фурье в идеальных кристаллах]] | ||
+ | * [[Перенос тепла в одномерных кристаллах]] | ||
+ | * Дополнительные стенды: | ||
** [[Распространение тепла в гармоническом одномерном кристалле: регулярная температура | регулярная температура]] | ** [[Распространение тепла в гармоническом одномерном кристалле: регулярная температура | регулярная температура]] | ||
** [[Распространение тепла в гармоническом одномерном кристалле: периодическая температура| периодическая температура]] | ** [[Распространение тепла в гармоническом одномерном кристалле: периодическая температура| периодическая температура]] |
Текущая версия на 16:18, 16 октября 2016
Кафедра ТМ > Проект "Термокристалл" > Распространение тепла в гармоническом одномерном кристаллеВиртуальная лаборатория > Распространение тепла в гармоническом одномерном кристалле
А.М. Кривцов (аналитическое решение, алгоритмы моделирования), Д.В. Цветков (программирование, расчетные алгоритмы).
Распространение тепла в простейших дискретных системах не подчиняется законам, известным для обычных макроскопических тел. Недавние экспериментальные работы показали, что аналогичные эффекты наблюдаются на наноуровне, в молекулярных и атомарных системах. Компьютерная программа, представленная ниже, демонстрирует распространение тепла в одномерном гармоническом кристалле. Показаны два графика: результаты молекулярно-динамического моделирования и континуального описания. Программа также позволяет осуществить сравнение с другими теориями распространения возмущений в континуальных средах.
Для просмотра процесса с начала нажмите кнопку Рестарт.
Дискретная модель (микроуровень)
Рассматривается одномерный кристалл, описываемый следующими уравнениями движения:
где
— перемещение частицы, — номер частицы, — масса частицы, — жесткость связи между частицами. Кристалл считается бесконечным: индекс принимает произвольные целые значения. Начальные условия:где
— независимые случайные величины с нулевым матожиданием и единичной дисперсией; — дисперсия начальных скоростей частиц, являющаяся медленно изменяющейся функцией пространственной координаты , где — шаг кристаллической решетки. Данные начальные условия можно интерпретировать как результат воздействия на кристалл ультракороткого лазерного импульса. На границах используются условия периодичности.Кинетическая температура (связь между микро и макро)
Кинетическая температура
определяется какгде
— постоянная Больцмана, , треугольными скобками обозначено математическое ожидание.Континуальное описание (макроуровень)
— Обратимое уравнение теплопроводности: — уравнение, выведенное как прямое следствие дискретных уравнений динамики кристалла [1].
Обозначения:
— время (переменная), — скорость звука.Классические континуальные уравнения
— Теплопроводности (Фурье): [2]
— Максвелла-Каттанео-Вернотта: .
— Волновое (Д’Аламбер): [3]
Обозначения:
— время релаксации (константа), — температуропроводность, — теплопроводность, — плотность.Публикации по теме
- А.М. Кривцов. Распространение тепла в бесконечном одномерном гармоническом кристалле. Доклады Академии Наук. 2015, том 464, № 2, C. 162-166 (pdf, моделирование). English version: Krivtsov A. M. Heat transfer in infinite harmonic one dimensional crystals. Doklady Physics, 2015, Vol. 60, No. 9, pp. 407–411. (Download pdf: 190 Kb)
- A.M. Krivtsov. On unsteady heat conduction in a harmonic crystal. 2015, ArXiv:1509.02506 (abstract, pdf).
Презентации
- А.М. Кривцов. Особенности термомеханических процессов в сверхчистых материалах. XI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики, 2015, Казань. Доклад: pdf: 2768Kb