Распространение тепла в гармоническом одномерном кристалле — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
 
(не показано 17 промежуточных версий 4 участников)
Строка 1: Строка 1:
 
[[en:Heat transfer in a 1D harmonic crystal]]
 
[[en:Heat transfer in a 1D harmonic crystal]]
 +
[[ТМ|Кафедра ТМ]] > [[Проект "Термокристалл"]] > [[Распространение тепла в гармоническом одномерном кристалле]] <HR>
 
[[Виртуальная лаборатория]] > [[Распространение тепла в гармоническом одномерном кристалле]] <HR>
 
[[Виртуальная лаборатория]] > [[Распространение тепла в гармоническом одномерном кристалле]] <HR>
 
[[А.М. Кривцов]] (аналитическое решение, алгоритмы моделирования), [[Д.В. Цветков]] (программирование, расчетные алгоритмы). <HR>
 
[[А.М. Кривцов]] (аналитическое решение, алгоритмы моделирования), [[Д.В. Цветков]] (программирование, расчетные алгоритмы). <HR>
 
<!--'''''Если отображается старая версия программы, обновите с помощью Ctrl + F5'''''-->
 
<!--'''''Если отображается старая версия программы, обновите с помощью Ctrl + F5'''''-->
 +
__NOEDITSECTION__
 
__NOTOC__
 
__NOTOC__
  
Распространение тепла в простейших дискретных системах не подчиняется законам, известным для обычных макроскопических тел. Недавние экспериментальные работы показали, что аналогичные эффекты наблюдаются на наноуровне, в молекулярных и атомарных системах. Компьютерная программа, представленная ниже, демонстрирует распространение тепла в  одномерном гармоническом кристалле. Показаны два графика: результаты молекулярно-динамического моделирования и континуального описания. Программа также позволяет осуществить сравнение с другими теориями распространения возмущений в континуальных средах. Анализ системы и получение для нее континуального описания представлены в работе: [[A.M. Krivtsov]], '''On unsteady heat conduction in a harmonic crystal'''. ArXiv:1509.02506 ([http://arxiv.org/abs/1509.02506 abstract], [http://arxiv.org/pdf/1509.02506v2.pdf pdf]).  
+
Распространение тепла в простейших дискретных системах не подчиняется законам, известным для обычных макроскопических тел. Недавние экспериментальные работы показали, что аналогичные эффекты наблюдаются на наноуровне, в молекулярных и атомарных системах. Компьютерная программа, представленная ниже, демонстрирует распространение тепла в  одномерном гармоническом кристалле. Показаны два графика: результаты молекулярно-динамического моделирования и континуального описания. Программа также позволяет осуществить сравнение с другими теориями распространения возмущений в континуальных средах.  
  
 
{{oncolor|yellow|black|Для просмотра процесса с начала нажмите кнопку '''Рестарт'''.}}
 
{{oncolor|yellow|black|Для просмотра процесса с начала нажмите кнопку '''Рестарт'''.}}
  
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tcvetkov/Equations/Equation%20v8b-10%20debug%20random/Equations_rus.html |width=1030 |height=785 |border=0 }}
+
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tcvetkov/Equations/Equation%20v8b-10%20debug%20random/Equations_rus.html |width=1030 |height=745 |border=0 }}
  
 
== Дискретная модель (микроуровень) ==
 
== Дискретная модель (микроуровень) ==
Строка 31: Строка 33:
 
     ,
 
     ,
 
</math>
 
</math>
где <math>\varrho_i</math> — независимые случайные величины с нулевым матожиданием и единичной дисперсией; <math>\sigma</math> — дисперсия начальных скоростей частиц, являющаяся медленно изменяющейся функцией пространственной координаты <math>x=ia</math>, где <math>a</math> — шаг кристаллической решетки. Данные начальные условия можно интерпретировать как результат воздействия на кристалл ультракороткого лазерного импульса. На границах используются условия периодичности.
+
где <math>\varrho_i</math> — независимые случайные величины с нулевым матожиданием и единичной дисперсией; <math>\sigma^2(x)</math> — дисперсия начальных скоростей частиц, являющаяся медленно изменяющейся функцией пространственной координаты <math>x=ia</math>, где <math>a</math> — шаг кристаллической решетки. Данные начальные условия можно интерпретировать как результат воздействия на кристалл ультракороткого лазерного импульса. На границах используются условия периодичности.
  
== Кинетическая температура: связь между микро и макро ==
+
== Кинетическая температура (связь между микро и макро) ==
  
 
Кинетическая температура <math>T</math> определяется как
 
Кинетическая температура <math>T</math> определяется как
Строка 44: Строка 46:
 
треугольными скобками обозначено математическое ожидание.
 
треугольными скобками обозначено математическое ожидание.
  
== Континуальное описание ==
+
== Континуальное описание (макроуровень) ==
  
{{oncolor||blue|—}} Обратимое уравнение теплопроводности (Кривцов): <math>\ddot T +\frac1t\dot T = c^2 T''</math>  —  уравнение, выведенное как прямое следствие дискретных уравнений динамики кристалла [http://arxiv.org/abs/1509.02506].
+
{{oncolor||blue|—}} Обратимое уравнение теплопроводности: <math>\ddot T +\frac1t\dot T = c^2 T''</math>  —  уравнение, выведенное как прямое следствие дискретных уравнений динамики кристалла [http://arxiv.org/abs/1509.02506].
  
 
Обозначения:
 
Обозначения:
Строка 56: Строка 58:
 
{{oncolor||red|—}} Теплопроводности (Фурье): <math>\dot T = \beta T''</math> [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8]
 
{{oncolor||red|—}} Теплопроводности (Фурье): <math>\dot T = \beta T''</math> [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8]
  
{{oncolor||#008888|—}} Максвелла-Каттанео-Вернотта: <math>\ddot T +\frac1\tau\dot T = \frac\beta\tau T''</math>
+
{{oncolor||#008888|—}} Максвелла-Каттанео-Вернотта: <math>\ddot T +\frac1\tau\dot T = \frac\beta\tau T''</math>.
  
 
{{oncolor||#00ff00|—}} Волновое (Д’Аламбер): <math>\ddot T = c^2 T''</math> [https://ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%BB%D0%BD%D0%BE%D0%B2%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5]
 
{{oncolor||#00ff00|—}} Волновое (Д’Аламбер): <math>\ddot T = c^2 T''</math> [https://ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%BB%D0%BD%D0%BE%D0%B2%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5]
Строка 68: Строка 70:
 
== Публикации по теме ==
 
== Публикации по теме ==
  
* [[A.M. Krivtsov]]. '''On unsteady heat conduction in a harmonic crystal.''' ArXiv:1509.02506 ([http://arxiv.org/abs/1509.02506 abstract], [http://arxiv.org/pdf/1509.02506v2.pdf pdf], [[Heat transfer in a 1D harmonic crystal|simulation]])  
+
* [[А.М. Кривцов]]. '''Распространение тепла в бесконечном одномерном гармоническом кристалле'''. [http://www.maik.ru/cgi-perl/journal.pl?lang=rus&name=dan Доклады Академии Наук]. 2015, том 464, № 2, C. 162-166 ([[Медиа: Krivtsov_2015 DAN rus proof.pdf|pdf]], [[Распространение тепла в гармоническом одномерном кристалле|моделирование]]). English version: [[Krivtsov A. M.]] '''Heat transfer in infinite harmonic one dimensional crystals.''' [http://www.maik.rssi.ru/cgi-perl/journal.pl?name=danphys&page=main Doklady Physics], 2015, Vol. 60, No. 9, pp. 407–411. (Download pdf: [[Медиа: Krivtsov 2015 DAN eng.pdf.pdf|190 Kb]])
  
* [[А.М. Кривцов]]. '''Колебания энергий в одномерном кристалле'''. [http://www.maik.ru/cgi-perl/journal.pl?lang=rus&name=dan Доклады Академии Наук]. 2014, том 458, № 3, 279-281. (Скачать pdf: [[Медиа: Krivtsov_2014_DAN_rus_corrected.pdf| 180 Kb]]).  English version: Anton M. [[Krivtsov]]. '''Energy Oscillations in a One-Dimensional Crystal.''' [http://www.maik.ru/cgi-perl/journal.pl?lang=rus&name=dan Doklady Akademii Nauk]. Doklady Physics, 2014, Vol. 59, No. 9, pp. 427–430. (Download pdf: [[Медиа: Krivtsov_2014_DAN_eng_corrected.pdf| 162 Kb]])
+
* [[A.M. Krivtsov]]. '''On unsteady heat conduction in a harmonic crystal.''' 2015, ArXiv:1509.02506 ([http://arxiv.org/abs/1509.02506 abstract], [http://arxiv.org/pdf/1509.02506v2.pdf pdf]).
  
<!--
+
== Презентации ==
  
== См. также ==
+
* [[А.М. Кривцов]]. '''Особенности термомеханических процессов в сверхчистых материалах.''' [http://ruscongrmech2015.ru/ XI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики], 2015, Казань. Доклад: [[Медиа: Krivtsov_2015_08_22_Kazan_10_updated_151010_.pdf|pdf: 2768Kb]]
  
* [[Распространение тепла в гармоническом одномерном кристалле: периодическая температура]]
+
== Страницы по теме ==
* [[Распространение тепла в гармоническом одномерном кристалле: регулярная температура]]
+
* [[Проект "Термокристалл"]]
 +
* [[Нарушение закона Фурье в идеальных кристаллах]]
 +
* [[Перенос тепла в одномерных кристаллах]]
 +
* Дополнительные стенды:
 +
** [[Распространение тепла в гармоническом одномерном кристалле: регулярная температура | регулярная температура]]
 +
** [[Распространение тепла в гармоническом одномерном кристалле: периодическая температура| периодическая температура]]
 +
** [[Распространение тепла в гармоническом одномерном кристалле: зависимость от коэффициента| зависимость от коэффициента]]
  
-->
 
 
[[Category: Виртуальная лаборатория]]
 
[[Category: Виртуальная лаборатория]]
 +
[[Category: Проект "Термокристалл"]]

Текущая версия на 16:18, 16 октября 2016

Кафедра ТМ > Проект "Термокристалл" > Распространение тепла в гармоническом одномерном кристалле
Виртуальная лаборатория > Распространение тепла в гармоническом одномерном кристалле
А.М. Кривцов (аналитическое решение, алгоритмы моделирования), Д.В. Цветков (программирование, расчетные алгоритмы).


Распространение тепла в простейших дискретных системах не подчиняется законам, известным для обычных макроскопических тел. Недавние экспериментальные работы показали, что аналогичные эффекты наблюдаются на наноуровне, в молекулярных и атомарных системах. Компьютерная программа, представленная ниже, демонстрирует распространение тепла в одномерном гармоническом кристалле. Показаны два графика: результаты молекулярно-динамического моделирования и континуального описания. Программа также позволяет осуществить сравнение с другими теориями распространения возмущений в континуальных средах.

Для просмотра процесса с начала нажмите кнопку Рестарт.

Дискретная модель (микроуровень)

Рассматривается одномерный кристалл, описываемый следующими уравнениями движения:

[math] \ddot{u}_i = \omega_0^2(u_{i-1}-2u_i+u_{i+1}) ,\qquad \omega_0 = \sqrt{C/m}, [/math]

где [math]u_i[/math] — перемещение частицы, [math]i[/math] — номер частицы, [math]m[/math] — масса частицы, [math]C[/math] — жесткость связи между частицами. Кристалл считается бесконечным: индекс [math]i[/math] принимает произвольные целые значения. Начальные условия:

[math] u_i|_{t=0} = 0 ,\qquad \dot u_i|_{t=0} = \sigma(x)\varrho_i , [/math]

где [math]\varrho_i[/math] — независимые случайные величины с нулевым матожиданием и единичной дисперсией; [math]\sigma^2(x)[/math] — дисперсия начальных скоростей частиц, являющаяся медленно изменяющейся функцией пространственной координаты [math]x=ia[/math], где [math]a[/math] — шаг кристаллической решетки. Данные начальные условия можно интерпретировать как результат воздействия на кристалл ультракороткого лазерного импульса. На границах используются условия периодичности.

Кинетическая температура (связь между микро и макро)

Кинетическая температура [math]T[/math] определяется как

[math] T(x) = \frac m{k_{B}}\langle\dot u_i^2\rangle, [/math]

где [math]k_{B}[/math] — постоянная Больцмана, [math]i=x/a[/math], треугольными скобками обозначено математическое ожидание.

Континуальное описание (макроуровень)

Обратимое уравнение теплопроводности: [math]\ddot T +\frac1t\dot T = c^2 T''[/math] — уравнение, выведенное как прямое следствие дискретных уравнений динамики кристалла [1].

Обозначения: [math]t[/math] — время (переменная), [math]c[/math] — скорость звука.

Классические континуальные уравнения

Теплопроводности (Фурье): [math]\dot T = \beta T''[/math] [2]

Максвелла-Каттанео-Вернотта: [math]\ddot T +\frac1\tau\dot T = \frac\beta\tau T''[/math].

Волновое (Д’Аламбер): [math]\ddot T = c^2 T''[/math] [3]

Обозначения: [math]\tau[/math] — время релаксации (константа), [math]\beta[/math] — температуропроводность, [math]\kappa[/math] — теплопроводность, [math]\rho[/math] — плотность.

Публикации по теме

Презентации

Страницы по теме