Вынужденные колебания цепочки в вязкой среде — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(→Граничные и начальные условия) |
|||
Строка 27: | Строка 27: | ||
где <math>F</math> — сила взаимодействия, <math>m</math> — масса частицы, <math>μ</math> — коэффициент вязкости, <math>V_{k}</math> — скорость частицы. | где <math>F</math> — сила взаимодействия, <math>m</math> — масса частицы, <math>μ</math> — коэффициент вязкости, <math>V_{k}</math> — скорость частицы. | ||
− | ===Граничные и начальные условия=== | + | '''Полужирное начертание'''===Граничные и начальные условия=== |
Начальные условия нулевые | Начальные условия нулевые | ||
− | + | Периодические граничные условия: | |
:<math>V_{N}=c(x_{1}+aN-x_{N}-1)\frac{dt}{m}-2μV_{N}+Qcos(ωt)</math> | :<math>V_{N}=c(x_{1}+aN-x_{N}-1)\frac{dt}{m}-2μV_{N}+Qcos(ωt)</math> | ||
:<math>V_{1}=-c(x_{1}+aN-x_{N}-1)\frac{dt}{m}-2μV_{1}</math> | :<math>V_{1}=-c(x_{1}+aN-x_{N}-1)\frac{dt}{m}-2μV_{1}</math> |
Версия 19:36, 22 января 2020
Курсовой проект по Механике дискретных сред
Исполнитель: Шпетный Даниил
Группа: 3630103/60101
Семестр: осень 2019
Постановка задачи
Исследовать вынужденные колебания в вязкой среде. Построить график перемещений частиц от времени.
Построение модели
Процесс моделируется как одномерные колебания цепочки частиц.
Теоретическая сводка
Парное взаимодействие определяется формулой:
где
— сила взаимодействия, — жесткость связи, — перемещение частицы, — номер частицы.Уравнение скорости частиц
и :где
— сила взаимодействия, — масса частицы, — коэффициент вязкости, — скорость частицы.Полужирное начертание===Граничные и начальные условия=== Начальные условия нулевые Периодические граничные условия:
где
— амплитуда возмущающей силы, — частота возмущающей силы, — количество частиц.Решение
При построении модели были приняты следующие значения параметров:
-шаг по времени