Васильева Анастасия — различия между версиями
Anpolol (обсуждение | вклад) |
|||
Строка 13: | Строка 13: | ||
[[Фазовые переходы МД|Фазовые переходы МД]] | [[Фазовые переходы МД|Фазовые переходы МД]] | ||
− | [[Моделирование | + | [[[[ Курсовые_работы_по_ВМДС:_2018-2019 | Курсовые работы 2018-2019 учебного года]] > '''Моделирование свободных колебаний цепочки связанных гармонических осцилляторов''' <HR> |
+ | |||
+ | '''''Курсовой проект по [[Механика дискретных сред|Механике дискретных сред]]''''' | ||
+ | |||
+ | '''Исполнитель:''' [[Васильева Анастасия]] | ||
+ | |||
+ | '''Группа:''' 43604/1 | ||
+ | |||
+ | '''Семестр:''' осень 2018 | ||
+ | |||
+ | ===Постановка задачи=== | ||
+ | |||
+ | Рассмотрим движения движение цепочки связанных гармонических осцилляторов - модель, представляющая собой систему шариков с массами m, cвязанных между собой пружинками одинаковой жесткости k. | ||
+ | |||
+ | [[File:1dfgs.jpg|center]] | ||
+ | |||
+ | ===Решение=== | ||
+ | |||
+ | Запишем уравнения движения для каждой массы колебательной системы (1): | ||
+ | |||
+ | [[File:1 1.jpg|center]] | ||
+ | |||
+ | Для удобства дальнейшего решения запишем уравнение (1), введя обозначение | ||
+ | |||
+ | [[File:1 12.png|center]] | ||
+ | |||
+ | в следующем виде (2): | ||
+ | |||
+ | [[File:2 1.jpg|center]] | ||
+ | |||
+ | Ищем решение системы дифференциальных уравнений в виде (3): | ||
+ | |||
+ | [[File:3 1.jpg|center]] | ||
+ | |||
+ | Подставив (3) в систему (2), сгруппировав члены, и записав систему в матричном виде, получим (4): | ||
+ | |||
+ | [[File:4 1.jpg|center]] | ||
+ | |||
+ | B - трехдиагональная матрица, элементы которой вычисляются по следующим правилам (5): | ||
+ | |||
+ | [[File:5 1.jpg|center]] | ||
+ | |||
+ | Алгоритм решения данной задачи реализуется в MATLAB. | ||
+ | |||
+ | Результат работы можно посмотреть на графике зависимости значений смещений тел от времени: | ||
+ | |||
+ | [[File:M=1,k=5,R1=0.5,N=50.gif|center]] | ||
+ | |||
+ | == См. также == | ||
+ | |||
+ | *[[Кафедра "Теоретическая механика"]] | ||
+ | *[[Курсовые работы по ВМДС: 2018-2019]] | ||
+ | *[[Моделирование свободных колебаний цепочки связанных гармонических осцилляторов|Моделирование свободных колебаний цепочки связанных гармонических осцилляторов]] | ||
== Контактная информация == | == Контактная информация == | ||
* +7-921-430-14-35 | * +7-921-430-14-35 | ||
* nastya_vasilek@mail.ru | * nastya_vasilek@mail.ru |
Версия 21:22, 26 января 2019
Содержание
Образование
2004-2015 гг. МБОУ СОШ №15, г-к Кисловодск, Ставропольский край
Проекты
Силовой резонанс для осциллятора с диссипацией
ИДЕАЛЬНЫЙ ГАЗ И ПОСТРОЕНИЕ ЗАВИСИМОСТИ КОЛИЧЕСТВА ЧАСТИЦ ОТ ВРЕМЕНИ
[[ Курсовые работы 2018-2019 учебного года > Моделирование свободных колебаний цепочки связанных гармонических осцилляторовКурсовой проект по Механике дискретных сред
Исполнитель: Васильева Анастасия
Группа: 43604/1
Семестр: осень 2018
Постановка задачи
Рассмотрим движения движение цепочки связанных гармонических осцилляторов - модель, представляющая собой систему шариков с массами m, cвязанных между собой пружинками одинаковой жесткости k.
Решение
Запишем уравнения движения для каждой массы колебательной системы (1):
Для удобства дальнейшего решения запишем уравнение (1), введя обозначение
в следующем виде (2):
Ищем решение системы дифференциальных уравнений в виде (3):
Подставив (3) в систему (2), сгруппировав члены, и записав систему в матричном виде, получим (4):
B - трехдиагональная матрица, элементы которой вычисляются по следующим правилам (5):
Алгоритм решения данной задачи реализуется в MATLAB.
Результат работы можно посмотреть на графике зависимости значений смещений тел от времени:
См. также
- Кафедра "Теоретическая механика"
- Курсовые работы по ВМДС: 2018-2019
- Моделирование свободных колебаний цепочки связанных гармонических осцилляторов
Контактная информация
- +7-921-430-14-35
- nastya_vasilek@mail.ru