Фролова Ксения. Курсовой проект по теоретической механике — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Решение)
(Решение)
Строка 93: Строка 93:
 
<math>s = v_0\cos\alpha*t</math><br>
 
<math>s = v_0\cos\alpha*t</math><br>
 
Найдем время полета стрелы.<br>
 
Найдем время полета стрелы.<br>
<math>g = \frac{v_0\sin\alpha}{t/2} \Rightarrow t = \frac{4sqrt{\gamma}(\triangle x- x_0)^2\sin\alpha}{lx_0sqrt{m}g}</math><br>
+
<math>g = \frac{v_0\sin\alpha}{t/2} \Rightarrow t = \frac{4\sqrt{\gamma}(\triangle x- x_0)^2\sin\alpha}{lx_0\sqrt{m}g}</math><br>
 
<math>s = v_0\cos\alpha\frac{4\sqrt{\gamma}(\triangle x- x_0)^2\sin\alpha}{lx_0\sqrt{m}g} = \frac{4\gamma(\triangle x- x_0)^4\sin2\alpha}{l^2x_0^2mg}</math><br>
 
<math>s = v_0\cos\alpha\frac{4\sqrt{\gamma}(\triangle x- x_0)^2\sin\alpha}{lx_0\sqrt{m}g} = \frac{4\gamma(\triangle x- x_0)^4\sin2\alpha}{l^2x_0^2mg}</math><br>
  

Версия 12:45, 31 мая 2012

Тема проекта

Моделирование стрельбы из лука
Модель лука

Постановка задачи

Существуют статические и динамические параметры конструкции лука.

  • статические параметры: сила натяжения тетивы, величина рабочего хода
  • динамические параметры: скорость распрямления дуг, амплитуда и длительность колебаний в дуге

В рамках данной курсовой работы необходимо составить модель лука. Интересующей нас величиной является дальность полета стрелы. Задачей является выведение и последующее рассмотрение зависимости этой дальности от вышеуказанных параметров конструкции лука.
Конкретизация:
Стоит рассмотреть две модификации лука: в первом случае можно принять тетиву за нерастяжимую нить, а плечи за плоские пружины изгиба или же за стрержни, поместив пружину между ними; во втором случае стоит учитывать растяжимость тетивы. Далее необходимо рассчитать дальность полета стрелы.

Краткий экскурс

Общий принцип
Причиной движения стрелы является переход потенциальной энергии деформируемого тела в кинетическую энергию полета снаряда. Реализация происходит посредством сравнительно медленного оттягивания тетивы, в течение которого накапливается потенциальная энергия упругости плеч лука, последующего спуска тетивы, когда плечи, разгибаясь, преобразуют накопленную энергию в кинетическую энергию полета стрелы, а также непосредственно полета стрелы, происходящего за счет полученной кинетической энергии.
Преобразование потенциальной энергии деформируемого тела в кинетическую энергию полета стрелы
Одним из основных боевых качеств лука является его силовая характеристика - зависимость силы натяжения, прикладываемой к тетиве, от смещения тетивы из положения равновесия. Изображая данную зависимость на графике, мы получаем динамическую кривую.
Пусть силовая характеристика известна (эту зависимость нетрудно получить экспериментальным путем, оттягивая тетиву на горизонтально покоящемся луке с помощью гирек разных масс). Тогда мы можем вычислить потенциальную энергию, накапливаемую за счет оттягивания тетивы путем взятия интеграла:
[math]\int^l_0F(s)ds[/math], где [math]l[/math] является величиной рабочего хода (максимальной величиной смещения тетивы)
Потенциальная энергия деформируемых плеч преобразуется не только в кинетическую энергию полета стрелы, но также и в кинетическую энергию тетивы, кинетическую энергию плеч, отдачу стрелку, колебания дуги, преодоление силы трения стрелы о "полочку".
Так, необходимо ввести в рассмотрение КПД лука:
[math]\eta = \frac{T}{U}[/math]*100%
Кинетическая энергия снаряда T:
[math]T = \frac{mv_0^2}{2} [/math]
Рассмотрим зависимость [math]\eta \sim m[/math]:
- если m очень мало, то выстрел "как бы холостой" [math]\Rightarrow \eta[/math] мало;
- если m слишком велико, то уменьшается ускорение, сообщаемое стреле, увеличивается отдача лука, увеличивается сила трения [math]\Rightarrow T \searrow \Rightarrow \eta \searrow[/math]
Таким образом, нужно искать баланс. Опыты показывают, что КПД составляет 30% - 85%
Начальная скорость стрелы обратно пропорциональна времени, а время, в течение которого накапливается потенциальная энергия для последующего перехода в кинетическую зависит от величины рабочего хода (или же просто от смещения тетивы, если лук натягивается не до "упора"), а также от массы стрелы. В современных луках начальная скорость составляет 40 - 80 м/с.
Мощность лука
[math]P = \frac{U}{t}[/math], [math]P \sim \frac{1}{t}, \frac{1}{m}[/math]
Так, для того, чтобы [math]P \searrow[/math], необходимо, чтобы [math]t \searrow, m \searrow[/math]
Для того, чтобы [math]v_0 \nwarrow [/math], необходимо, чтобы [math]t \searrow \Rightarrow l \searrow, m \searrow[/math], но при этом масса стрелы не должна быть слишком мала. Опыты показывают, что ее величина должна составлять 15 - 40 г
Баллистика
Наглядное сравнение стрельбы из огнестрельного оружия и стрельбы из лука. Дело в том, что в огнестрельном оружии не учитывается баллистика, в отличие от лука и арбалета.
Рассмотрим прямой выстрел(начальная скорость направлена параллельно земле):
Пусть известны следующие величины: [math]v_0 = 800[/math]м/с - скорость пули, [math]v_1 = 80[/math]м/с - скорость стрелы, расстояние s = 200 м
Время полета пули:[math]t = \frac{200}{800} = \frac{1}{4}[/math] с, время полета стрелы: [math]t = \frac{200}{80} = \frac{5}{2}[/math] с
[math]h = \frac{gt^2}{2} [/math], высота, на которую пуля окажется ниже мишени, составит [math]h = \frac{10}{32} = 0.3125[/math]м
Таким образом, если брать в расчет высоту снайпера, то пуля не "войдет в землю" и, в зависимости от масштабов мишени, может попасть в нее.
Высота же, на которую стрела окажется ниже мишени составит: [math]h = \frac{250}{82} = 31.25[/math]м, откуда сразу же видно, что, учитывая высоту стрелка, пуля войдет в землю и не достигнет мишени.
Факторы стрельбы

  • дальность стрельбы (450 м. - рекорд для спортивных луков);
  • дальность поражения (60 - 80 м для поражения защищенного доспехами человека, 250 - 180 м для незащищенного человека)

Существует эффективная прицельная дальность стрельбы - дистанция, на которой возможно гарантированное попадание стрелы в реальную подвижную цель, не успевающую выйти из зоны поражения. Эта величина составляет примерно 30 - 40 м)
Поправки

  • ветер;
  • подвижная цель;

Наглядное представление:
Пусть скорость ветра [math]v_0 \approx 1[/math] м/с, скорость стрелы [math]v_1 \approx 80[/math] м/с, пусть скорость ветра перпендикулярна начальной скорости стрелы
Рассмотрим дистанцию в 40 м
tg[math]\alpha = \frac{1}{80} = \frac{h}{40} \Rightarrow h = \frac{40}{80} = 0.5 [/math], где h - смещение

Решение

Рассмотрим следующую модификацию лука:плечи приняты за стрежни, между ними находится пружина, тетива рассматривается как нерастяжимая нить.
От каких параметров зависит силовая характеристика лука?
[math]M = \gamma*\triangle\varphi[/math]
[math]T*h = M = \gamma*\triangle\varphi[/math]
[math]T = \gamma*\frac{\triangle\varphi}{h}[/math]
[math]F = 2*T*\cos\beta[/math] = [math]2*\gamma*\frac{\triangle\varphi}{h}*\cos\beta[/math]
Геометрия

  • Найдем [math]\angle\beta[/math], а точнее, [math]\cos\beta[/math]:

По обобщенной теореме косинусов и при последующем упрощении получается, что [math]\cos\beta = \frac{\triangle x^2 + 2\triangle xx_0}{2\sqrt{l^2 - x_0^2}*(\triangle x + x_0)}[/math]

  • Найдем h - плечо силы натяжения тетивы:

[math]h = (\triangle x + x_0)\sin\beta \Rightarrow h = \frac{\sqrt{4(l^2 - x_0^2)^2*(\triangle x + x_0)^2 - (\triangle x^2 + 2\triangle xx_0)^2}}{2\sqrt{l^2 - x_0^2}}[/math]

  • Найдем [math]\triangle \varphi[/math]:

[math]\varphi = \chi - \gamma = 2*(\arcsin(\frac{\sqrt{l^2 - x_0^2}}{l^2}*(\sqrt{l^2 - (l^2 - x_0^2)\sin\beta^2}) -\sin\beta*x_0)))[/math]

  • Найдем [math]\frac{\triangle\varphi}{h}*\cos\beta[/math]:

[math]\frac{\triangle\varphi}{h}*\cos\beta = \frac{\triangle x^2 + 2\triangle xx_0}{(\triangle x + x_0)\sqrt{4(l^2 - x_0^2)(\triangle x + x_0)^2 - (\triangle x + 2\triangle xx_0)^2}}*2\arcsin(\frac{\sqrt{l^2 - x_0^2}}{l^2}*(\sqrt{l^2 - (l^2 - x_0^2)\sin\beta^2}) -\sin\beta*x_0))[/math]
Нахождение силовой характеристики лука
[math]F = F(\triangle x) = \frac{\partial F}{\partial 0}(0)\triangle x+ \frac{1}{2}*\frac{\partial^2F}{\partial \triangle x^2}(0)(\triangle x)^2 + \frac{1}{6}*\frac{\partial^3F}{\partial \triangle x^3}(0)(\triangle x)^3[/math]
Проведенные расчеты показали, что [math]\frac{\partial F}{\partial 0}(0) = 0 ;\frac{\partial^2F}{\partial \triangle x^2}(0) = 0[/math]
[math]\frac{\partial^3F}{\partial \triangle x^3}(0) = \frac{12\gamma(l^2 - 2x_0^2)}{l^2x_0^2\sqrt{(l^2 - x_0^2)}} [/math]
Таким образом, [math]F(\triangle x) = \frac{1}{6}*\frac{12\gamma(l^2 - 2x_0^2)}{l^2x_0^2\sqrt{(l^2 - x_0^2)}}*\triangle x^3[/math]
Решение задачи на непосредственно нахождение дальности полета стрелы
Весь процесс стрельбы из лука можно разделить на два этапа: натяжение тетивы и полет выпущенной стрелы. Для нахождения интересующей нас дальности полета стрелы необходимо знать начальную скорость, с которой выпущена стрела. Для нахождения же этой скорости необходимо рассматривать процесс натяжения тетивы. Итак, рассмотрим два этапа.

  • Этап натяжения тетивы

По второму закону Ньютона [math]F = mw[/math]
С другой стороны, сила равна найденной величине: [math]F(\triangle x) = \frac{2\gamma(l^2 - 2x_0^2)}{l^2x_0^2\sqrt{(l^2 - x_0^2)}}*\triangle x^3[/math]
Отсюда можно найти ускорение, переданное стреле:
[math]w = \frac{2\gamma(l^2 - 2x_0^2)}{ml^2x_0^2\sqrt{(l^2 - x_0^2)}*\triangle x^3}[/math]
[math]\triangle x = \frac{1}{2}wt^2 + x_0 \Rightarrow w = \frac{2\gamma(l^2 - 2x_0^2)}{ml^2x_0^2\sqrt{(l^2 - x_0^2)}*\triangle x^3}*(\frac{1}{8}w^3t^6 + x_0^3)[/math]
[math]v_0 = wt = w = \frac{2\gamma(l^2 - 2x_0^2)}{ml^2x_0^2\sqrt{(l^2 - x_0^2)}*\triangle x^3}*(\frac{1}{8}w^3t^6 + x_0^3)*t[/math]
Выразим одну неизвестную величину через другую (ускорение через время). В луке величину квадрата начального смещения, а также куб этой величины можно cчитать малой в сравнении со степенями величины длины плеча лука.
[math]w = \frac{2lx_0\sqrt{m}}{t^3\sqrt{\gamma}}[/math]
Тогда [math]v_0 = \frac{2\sqrt{m}lx_0}{t^2\sqrt{\gamma}}[/math]
[math]t = \frac{lx_0\sqrt{m}}{(\triangle x - x_0)\sqrt{\gamma}}[/math]
Тогда [math]v_0 = \frac{2\sqrt{\gamma}(\triangle x- x_0)^2}{lx_0\sqrt{m}}[/math]

  • Этап полета стрелы

[math]s = v_0\cos\alpha*t[/math]
Найдем время полета стрелы.
[math]g = \frac{v_0\sin\alpha}{t/2} \Rightarrow t = \frac{4\sqrt{\gamma}(\triangle x- x_0)^2\sin\alpha}{lx_0\sqrt{m}g}[/math]
[math]s = v_0\cos\alpha\frac{4\sqrt{\gamma}(\triangle x- x_0)^2\sin\alpha}{lx_0\sqrt{m}g} = \frac{4\gamma(\triangle x- x_0)^4\sin2\alpha}{l^2x_0^2mg}[/math]

Обсуждение результатов и выводы

Одним из основных вопросов, влияющих на вычисления, было выявление характера зависимости прикладываемой к тетиве силы от смещения тетивы. Из ранее приведенного опыта можно наглядно увидеть динамическую кривую (изображение данной характеристики на графике) лука, имеющегося в наличии, а также из проделанной работы по классификации различных модификаций обсуждаемого метательного оружия можно выделить для рассмотрения динамические кривые прямого лука, рекурсивного лука и современного блочного лука. Вычисления в рамках данной курсовой работы велись для наиболее простой модели лука. Полученная зависимость оказалось отнюдь нелинейной. Оказалось, что прикладываемая к тетиве сила зависит от куба величины смещения тетивы, от квадрата величины длины плеча лука, от квадрата величины начального смещения тетивы, обозначающего положение равновесия лука, от жесткости материала, из которого сделаны плечи лука.

Ссылки по теме

См. также