Редактирование: Сравнение методов интегрирования уравнений динамики цепочки

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
[[ Курсовые_работы_по_ВМДС:_2018-2019 | Курсовые работы 2018-2019 учебного года]] > '''Сравнение методов интегрирования уравнений динамики цепочки''' <HR>
 
 
'''''Курсовой проект по [[Механика дискретных сред|Механике дискретных сред]]'''''
 
 
'''Исполнитель:''' [[Иванова Яна]]
 
 
'''Группа:''' 43604/1
 
 
'''Семестр:''' осень 2018
 
 
 
=Постановка задачи=
 
=Постановка задачи=
Рассматривается одномерная цепочка элементов, состоящая из частиц с одинаковыми массами m. Термин "одномерная цепочка" означает совокупность расположенных вдоль прямой линии N материальных частиц.. Рассматриваются продольные колебания образующих цепочку частиц под действием сил взаимодействия между частицами цепочки. Движение частицы с номером n описывается зависимостью от времени t её смещения относительно положения равновесия этой частицы (узла цепочки с номером n). Примем в качестве положительных смещения атомов вправо от положения равновесия, а отрицательных – влево. Каждый  атом  смещается  только  вдоль  цепочки,  что  следует  из  требования
+
Рассматривается цепочка элементов, состоящая из одинаковых масс m. Термин одномерная цепочка означает в дальнейшем совокупность расположенных вдоль прямой линии N материальных частиц P0, P1, ... Pn, ..., PN–1. Рассматриваются продольные колебания образующих цепочку частиц под действием сил взаимодействия между частицами цепочки, а также параллельных направлению цепочки внешних сил. Движение частицы с номером n описывается зависимостью от времени t её смещения un относительно положения равновесия этой частицы (узла цепочки с номером n).
одномерности модели. Такие смещения характерны для продольной волны.
 
  
 
=Решение=
 
=Решение=
 +
Рассмотрим модель колебаний одномерной многоатомной цепочки равных масс. Пусть в этой цепочке находится N атомов. Обозначим смещение n-го атома un, а атома, отстоящего от него на p узлов, – un+p. Примем в качестве положительных смещения атомов вправо от положения равновесия, а отрицательных – влево.
  
 
Каждый атом смещается только вдоль цепочки, что следует из требования одномерности модели.
 
Каждый атом смещается только вдоль цепочки, что следует из требования одномерности модели.
Пусть атомы связаны между собой упругой силой F с коэффициентом упругости с. Найдем уравнение движения n-го и n+1-го атома в цепи. В равновесном положении силы, действующие на атомы, равны нулю. При произвольных смещениях на каждый n-й атом будет действовать сила со стороны соседних атомов.
+
Пусть атомы связаны между собой упругой силой F с коэффициентом упругости с. Найдем уравнение движения n-го и n+1-го атома в цепи. В равновесном положении силы, действующие на атомы, равны нулю. При произвольных смещениях на каждый n-й атом будет действовать сила со стороны соседних атомов. В соответствии с элементарным законом Гука эту силу можно представить в виде:
Уравнение движения имеет вид:
 
::<math>
 
{m}\ddot{\bf U}_{i} = {С}({\bf U}_{i-1}-2{\bf U}_{i} + {\bf U}_{i+1}),
 
</math>
 
где С - жёсткость одной пружинки, m - масса одной частицы, <math> {\bf U}_{i} </math> - перемещение частицы, a - расстояние между двумя соседними частицами в начальный момент времени.
 
  
Период одного колебания:<math> {T}_{o} = 2{\pi}\sqrt\frac {m}{C} </math>
+
В качестве начальных условий заданы случайные начальные скорости таким образом, что средняя скорость всех частиц равна 0. Перемещения всех частиц в начальный момент времени равны нулю. Также заданы периодические граничные условия на перемещения.
В качестве начальных условий заданы случайные начальные скорости рандомным образом. Перемещения всех частиц в начальный момент времени равны нулю. Полная энергия системы складывается из потенциальной энергии взаимодействия частиц и их кинетической энергии в каждый момент времени. В циклах для потенциальной и кинетической энергий рассчитываются эти значения. Далее производится нормировка, энергии складываются и строится график зависимости.
 
  
 
=Методы Верле, Эйлера и Рунге-Кутта=
 
=Методы Верле, Эйлера и Рунге-Кутта=
Строка 33: Строка 17:
 
Среди наиболее известных методов интегрирования уравнений движения можно выделить алгоритм Верле. Рассмотрим построение алгоритма Верле, для простоты, в одномерном виде. Основная идея алгоритма Верле состоит в записи разложения положения частицы.
 
Среди наиболее известных методов интегрирования уравнений движения можно выделить алгоритм Верле. Рассмотрим построение алгоритма Верле, для простоты, в одномерном виде. Основная идея алгоритма Верле состоит в записи разложения положения частицы.
  
 +
=Численное решение=
  
=Численное решение=
 
Построим графики зависимости безразмерной энергии от безразмерного времени для 100000 частиц с шагом по времени dt = 0.01 и 5000 шагов интегрирования. По оси абсцисс откладывается время, отнесенное к периоду, по оси ординат - энергия, отнесенное к начальной энергии системы.
 
 
[[File:123456ддд.png|center]]
 
[[File:123456ддд.png|center]]
Численное решение методом Верле
+
Численное решение для 100 частиц методом Верле
  
 
[[File:Эйлерр.png|center]]
 
[[File:Эйлерр.png|center]]
  
Численное решение методом Эйлера
+
Численное решение для 100 частиц методом Эйлера
 
 
[[File:РунгК.jpg|center]]
 
  
Численное решение методом Рунге-Кутта 4 порядка
+
[[File:Рунге.jpg|center]]
  
=Результаты=
+
Численное решение для 100 частиц методом Рунге-Кутта 4 порядка
Метод Верле является симплектическим, то есть сохраняющим энергию с течением времени. Это можно проследить из графика, безразмерная энергия колеблется в пределах единицы. Методы Эйлера и Рунге-Кутта 4 порядка энергию не сохраняют, что заметно из возрастания графиков.
 
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)