Обобщение V-model на случай анизотропных сдвиговой и изгибной жёсткостей

Материал из Department of Theoretical and Applied Mechanics
Версия от 13:15, 23 января 2020; Flyingcookie (обсуждение | вклад) (Новая страница: «'''''Курсовой проект по Механике дискретных сред''''' '''Исполни…»)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Курсовой проект по Механике дискретных сред

Исполнитель: Вараев Владислав

Группа: 3630103/60101

Семестр: осень 2019


Краткое описание V - model

Тело представляется набором частиц, связанных упругими связями Для двух частиц возможно записать потенциал связи, параметры которого будут связаны с коэффициентами жёсткости связи, соответствующими жёсткостям на продольное растяжение, сдвиг, изгиб и кручение

Модель описывается следующими формулами:

Взаимодействие двух частиц

Сила взаимодействия:

[math]\mathbf{F_{ij}} = B_1 ( D_{ij} - a) \mathbf{d_{ij}} + \frac{B_2}{2D_{ij}}(\mathbf{n_{j1}} - \mathbf{n_{i1}})\cdot(\mathbf{E}-\mathbf{d_{ij}}\mathbf{d_{ij}}) [/math]

Моменты:

[math]\mathbf{M_{ij}} = R_i \mathbf{n_{i1}} \times \mathbf{F_{ij}} - \frac{B_2}{2}\mathbf{d_{ij}}\times \mathbf{n_{i1}}+\mathbf{M_{tb}} [/math]

[math]\mathbf{M_{ji}} = R_i \mathbf{n_{j1}} \times \mathbf{F_{ji}} + \frac{B_2}{2}\mathbf{d_{ij}}\times \mathbf{n_{j1}}-\mathbf{M_{tb}} [/math]

[math]\mathbf{M_{tb}} = B_3 \mathbf{n_{j1}} \times \mathbf{n_{i1}} - \frac{B_4}{2}(\mathbf{n_{j2}}\times \mathbf{n_{i2}}+\mathbf{n_{j3}}\times \mathbf{n_{i3}}) [/math]

Где [math]B_1[/math], [math]B_2[/math], [math]B_3[/math] и [math]B_4[/math] - различные коэффициенты, которые являются характеристиками системы.


Ссылки