Одномерный кристалл

Материал из Department of Theoretical and Applied Mechanics
Версия от 22:23, 12 июля 2015; Антон Кривцов (обсуждение | вклад) (Физические процессы)

Перейти к: навигация, поиск

Кафедра ТМ > Научный справочник > Механика > МДС >Одномерный кристалл

Одномерный кристалл: цепочка взаимодействующих частиц — простейшая модель для исследования общих свойств дискретных сред.

Модели

Гармонический одномерный кристалл

Одномерный кристалл с линейным взаимодействием между частицами. Возможные разновидности:

  • Сложный гармонический одномерный кристалл (массы частиц и/или жесткости связей изменяются периодически вдоль кристалла).
  • Неупорядоченный гармонический одномерный кристалл (массы частиц и/или жесткости связей меняются случайным образом вдоль кристалла).

Ангармонический одномерный кристалл

Одномерный кристалл с нелинейным взаимодействием между частицами.

Квазиодномерный кристалл

Кристалл, в котором частицы упорядочены в одномерную цепочку, однако движение частиц осуществляется как в продольном, так и в поперечном направлении.

Физические процессы

Распространение волн

В гармоническом приближении — наиболее простой для математического анализа процесс: распространение длинных волн описывается волновым уравнением. Для более коротких волн существенным становится дисперсия: зависимость скорости волны от ее длины, выражаемое дисперсионным уравнением. Для нелинейных волн взаимное влияние нелинейности и дисперсии приводит к очень сложным процессам, некоторое представление о которых можно получить из наблюдения обрушения морских волн вблизи береговой линии.

Уравнения состояния и фазовые переходы

Одномерный кристалл может находится только в двух состояниях: твердом и жидко-газообразном, так в 1D нет различия между газом и жидкостью. Для твердой фазы, в простейших случаях, уравнение состояния (например, уравнение Ми-Грюнайзена) может быть выведено аналитически из дискретных уравнений динамики кристалла. Имеется также множество работ по исследованию фазовых переходов.

Перенос тепла

Сложный и нетривиальный процесс, даже для простейших гармонических моделей одномерного кристалла. Как правило, не описывается классическим законом Фурье. Подробнее...

Переход тепла из механических степеней свободы в тепловые

Одна из краеугольных проблем термодинамики и статистической физики. Одно из первых исследований, приведших к парадоксальным результатам — знаменитая работа Ферми-Паста-Улама.

Разрушение

Одномерный кристалл представляет собой удобную модель для исследования влияния дискретности на процесс разрушения. В работах на эту тему обнаружен ряд принципиальных особенностей, присущих только дискретным системам.

Публикации по теме

Теплопроводность в одномерных кристаллах

  • Z. Rieder, J. L. Lebowitz and E. Lieb. Properties of a Harmonic Crystal in a Stationary Nonequilibrium State. J. Math. Phys. 8, 1073 (1967). Abstract. (Впервые показано, что для гармонической цепочки тепловой поток не зависит от количества частиц, а равновесная температура везде, кроме окрестности краев, равна полусумме температур краевых точек).
  • Hiroshi Nakazawa. On the Lattice Thermal Conduction. Prog. Theor. Phys. Supplement (1970), 45, 231-262. (Результаты Rieder at al (1967) аналитически распространяются на другие граничные условия и пространственный гармонический кристалл, для ангармонической цепочки численно показано, что тепловое сопротивление растет с увеличением нелинейности).
  • Baowen Li, Lei Wang, and Giulio Casati. Thermal Diode: Rectification of Heat Flux. Phys. Rev. Lett. 93, 184301 (2004) [4 pages]. (На примере контакта двух цепочек с различной нелинейностью показана осуществимость теплового диода — устройства, работающего как тепловой проводник в одну и изолятор в другую сторону).
  • Zonghua Liu, Baowen Li. Heat conduction in a 1D harmonic chain with three dimensional vibrations (26 Jun 2008) arXiv:0806.4224 (Показано, что теплопроводность в гармонической цепочке при пространственных вибрациях зависит от постоянной решетки, чего не наблюдается при одномерных вибрациях).
  • D. Roy, A. Dhar. Heat Transport in Ordered Harmonic Lattices. J Stat Phys (2008) 131: 535–541. (Получена точная формула для теплового потока в гармонической цепочке, в частных случаях воспроизводящая результаты Rieder et al. (1967) и Nakazawa (1970), исследуется также квантовый случай).
  • V. Kannan, A. Dhar, and J. L. Lebowitz. Nonequilibrium stationary state of a harmonic crystal with alternating masses. PRE 85, 041118 (2012). (Аналитически и численно рассматривается гармоническая цепочка, в которой четные и нечетные частицы имеют разные массы. Показано, что при наличии теплового потока через систему частицы разной массы имеют разные температуры даже при [math]N\to\infty[/math]. Причем для четного числа частиц горячее оказываются более тяжелые частицы, для нечетного — наоборот).

Разрушение одномерных кристаллов

  • Слепян Л.И., Троянкина Л.В. Волна разрушения в цепочке // ПМТФ. 1984. № 6. С. 128-134. (Исследовано влияние микроструктуры на макропараметры волны разрушения, распространяющейся в прямолинейной цепочке, где единичные массы соединены линейно-упругими безынерционными связями, жесткость которых уменьшается при достижении определенного уровня напряжений (σ*). Показано, что наличие микроструктуры вызывает разрушение раньше, чем это можно ожидать на основе континуального рассмотрения). (pdf)
  • Ю.В. Петров, А.А. Груздков, Н.А. Казаринов. Особенности динамического разрушения одномерных линейных цепочек // Докл. Акад. Наук, 2008, т.423, №1. С.51-55. (Аналитически и численно показано, что в растянутой дискретной цепочке после снятия внешней нагрузки может произойти разрыв — эффект не имеющий аналога для соответствующей континуальной модели). Eng: Yu. V. Petrov, A. A. Gruzdkov, N. A. Kazarinov. Features of the dynamic fracture of one-dimensional linear chains. Doklady Physics. 01/2008; 53(11):595-599.

Другие вопросы

Книги, в которых рассматривается одномерный кристалл (цепочка)

  • Борн М., Кунь Х. Теория кристаллических решеток. М.: ИЛ. 1959. 488 с.
  • Косевич А.М. Основы механики кристаллической решетки. М.: Наука. 1972.
  • Слепян Л.И. Нестационарные упругие волны. Л.: Судостроение, 1972, 376 с. (§2 Дискретная упругая система) (djvu)
  • Кунин И.А. Теория упругих сред с микроструктурой. М.: Наука. 1975. 416 с.
  • Косевич А.М. Теория кристаллической решетки. Харьков: Вища школа. 1988.
  • Морозов Н.Ф., Паукшто М.В. Дискретные и гибридные модели механики разрушения. С.-Пб: изд. СПбГУ. 1995. 160 с. (§1 Теория одномерных моделей — "цепочек".)
  • Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. Регулярная и хаотическая динамика. 2000 г., 560 с. (Гл. 4: Колебания в упорядоченных структурах). Трубецков Д.И., Рожнев А.Г. Линейные колебания и волны. Учеб. пособие. М.: Физматлит, 2001. 416 с. (Гл. 8: Колебания в системе связанных осцилляторов. Гл. 9: Переход к одномерной сплошной среде в системе связанных осцилляторов).

Терминология

  • [math]N[/math] — полное число частиц в кристалле.
  • Nonequilibrium steady statesнеравновесные стационарные состояния: состояния термодинамической системы, при котором присутствуют тепловые потоки, однако все термодинамические величины не зависят от времени.
  • Thermal rectificationтепловое разделение (ректификация).
  • Thermodynamic limitтермодинамический предел: предел при стремлении числа частиц к бесконечности ([math]N\to\infty[/math]).

См. также