Статистические характеристики дискретных сред
Материал из Department of Theoretical and Applied Mechanics
Кафедра ТМ > Научный справочник > Механика > МДС > Статистические характеристики ДС
Обозначения и терминология
Обозначение | Русское название | English name |
---|---|---|
Случайная величина | Random variable | |
Случайный процесс | Stochastic process | |
Случайный вектор [1] | Multivariate random variable (random vector) | |
Функция распределения | Cumulative distribution function | |
Плотность распределения | Probability density function (distribution density) | |
Математическое ожидание | Expected value (mathematical expectation) | |
Характеристическая функция | Characteristic function | |
Производящая функция моментов | Moment-generating function | |
Начальный момент [2] | Raw moment [3] | |
Центральный момент [4] | Central moment [5] | |
Нормированный момент | Standardized moment | |
Полуинвариант (кумулянт) | Cumulant | |
Дисперсия | Variance | |
Среднеквадратическое отклонение | Standard deviation | |
Коэффициент асимметрии | Skewness | |
Коэффициент эксцесса | Kurtosis (excess kurtosis) | |
4-й нормированный момент [6] | Historical kurtosis [7] | |
Плотность нормального распределения | Normal distribution density |
Полезные формулы
- Распределение случайной величины , являющейся функцией случайной величины
- Нормированные моменты нормальной случайной величины
- нечетные моменты равны нулю .
- Коэффициент эксцесса суммы независимых случайных величин
- где второе равенство выполняется для случайных величин с равной дисперсией, а третье равенство — для равнораспределенных случайных величин.
Научные разделы, связанные со статистическим описанием дискретных сред
- Теория вероятностей и Математическая статистика
- Стохастическое исчисление
- Статистическая механика
- Статистическая физика
- Физическая кинетика
- Химическая кинетика
- Термодинамика
- Неравновесная термодинамика
- Ergodic theory
- Discrete calculus and discrete analysis
Разное
- Вероятностное пространство
- Differential entropy
- Непрерывные распределения вероятности, которые могут выступать обобщениями нормального распределения
- Pearson distribution — a four-parametric family of probability distributions that extend the normal law to include different skewness and kurtosis values [8].
- Student's t-distribution — a one-parametric family of simmetric probability distributions estimating the mean of a normally distributed population (can be generalized to a three-parametric location-scale family).
- Generalized normal distribution — two families (symmetric and non-symmetric) of probability distributions adding a shape parameter to the normal distribution.
- См. также List of probability distributions and Relationships among probability distributions.
- R (programming language) — free software programming language and software environment for statistical computing and graphics.
Литература
- Hoover W.G. Computational Statistical Mechanics. Series "Studies in Modern Thermodynamics". Elsevier Science Publisher, Amsterdam, 1991, 324 pp. (Download pdf: 23 Mb, download page)
- Гиббс Дж.В. Основные принципы статистической механики (излагаемые со специальным применением к рациональному обоснованию термодинамики). М.-Л.: ОГИЗ, 1946. (Скачать djvu: 2.5 Mb, страница загрузки).
- Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics. New York: Charles Scribner's Sons. (Download djvu: 19 Mb, download page).
- Борн М. «Непрерывность, детерминизм, реальность» в книге «Размышления и воспоминания физика». М.: Мир, 1977. стр.162-187. (Скачать djvu: 2.4 Mb, страница загрузки).
- Born M. «Continuity, determinism and reality», Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser, Bind 30, Nr.2, (1955) 1-26.
- — Впервые рассмотрена (согласно [9]) классическая статистическая механика одной частицы (1955 г.)
- Лукач Е. Характеристические функции. Пер. с анг. 1979. М.: Наука. 424 с. Оглавление
- Lukacs, E. (1970) Characteristic Functions (2nd Edition), Griffin, London. (Download djvu: 3.9 Mb, download page).
- — A negative result (Theorem 7.3.5): The cumulant generating function cannot be a finite-order polynomial of degree greater than 2. <toggledisplay status=hide showtext="Clarification >>" hidetext="Clarification <<" linkstyle="font-size:default"> (Given the results for the cumulants of the normal distribution, it might be hoped to find families of distributions for which κm = κm+1 = ... = 0 for some m > 3, with the lower-order cumulants (orders 3 to m − 1) being non-zero. From the theorem it follows that there are no such distributions. In other words: the normal distribution is the only distribution with a finite number (two) of non-zero cumulants.)</toggledisplay> <toggledisplay status=hide showtext="Origin >>" hidetext="Origin <<" linkstyle="font-size:default"> Данное утверждение является следствием теоремы, впервые доказанной Юзефом Марцинкевичем, польским математиком, погибшим во время Второй мировой войны: Marcinkiewicz, J. (1938). Sur une propriete de la loi de Gauss. Math. Zeitschr., 44, 612-618 (read online, download pdf: 397 Kb download page). Reprinted in J. Marcinkiewicz, Collected Papers. Panstwowe wydawnictwo Naukowe Warszawa, 1964. Abstract. </toggledisplay>
- Sergey S. Stepanov. Stochastic World. (Series: Mathematical Engineering). Springer, 2013, 339 p. Springerlink
- Стохастический мир — русская версия в вики-формате.
- — Простое введение в стохастические дифференциальные уравнения.
- Теория вероятностей и математическая статистика на сайте EqWorld
- Статистическая физика на сайте EqWorld
- Probability на сайте Белорусская научная библиотека
- List of textbooks in statistical mechanics
См. также
{{#ifgroup:sysop|
<toggledisplay status=hide showtext="Архив >>" hidetext="Архив <<" linkstyle="font-size:default">
Приложение к динамике цепочки
Рассмотрим одномерную дискретную среду, сотоящую из
частиц. Обозначим — некоторую характеристику частицы, например ее перемещение. Введем среднее значение характеристики каки среднее значение степени
- .
Если интерпретировать
как случайную величину, то при достаточно большом величину можно называть -м моментом случайной величины.Ссылки
- Случайные величины и их характеристики
Терминология
- Начальным и центральным моментом случайной величины называются, соответственно, величины
- где математическое ожидание случайной величины, — степень момента. —
Словарь
- Случайная величина — Random variable
- Математическое ожидание — Expected value (mathematical expectation)
- Дисперсия случайной величины — Variance
- Среднеквадратическое отклонение — Standard deviation
- Коэффициент асимметрии — Skewness
- Коэффициент эксцесса — Kurtosis
</toggledisplay>
}}