Уравнение состояния Ми-Грюнайзена
Кафедра ТМ > Научный справочник > Механика > МДС > Уравнение состояния Ми-Грюнайзена
Содержание
- 1 Основной источник
- 2 Уравнение состояния Ми-Грюнайзена
- 3 Уравнение состояния для кристаллов простой структуры
- 4 Холодная кривая для потенциалов Леннарда-Джонса, Ми, Морзе
- 5 Коэффициент Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе
- 6 Функция Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе
- 7 Статьи
- 8 Ссылки
Основной источник
Материал данной статьи более подробно и полно изложен в публикации
- Кривцов А.М., Кузькин В.А. Получение уравнений состояния идеальных кристаллов простой структуры // Известия РАН. Механика твердого тела. 2011, № 3, c. 67-82. (Аннотация, скачать pdf: 499 Kb)
- English translation: Krivtsov A.M., Kuzkin V.A. Derivation of Equations of State for Ideal Crystals of Simple Structure // Mech. Solids. 46 (3), 387-399 (2011) (Download pdf: 529 Kb)
Уравнение состояния Ми-Грюнайзена
При больших давлениях и температурах принято представлять давление
в конденсированном веществе в виде суммы "холодной" и "тепловой" компонент:
Холодная компонента, часто называемая "холодной кривой" (cold curve), обусловлена деформированием кристаллической решетки, а вторая - тепловыми колебаниями атомов. Иными словами, холодное давление зависит только от объема, а тепловое - от объема и тепловой энергии
:
Тепловая энергия - часть внутренней энергии твердого тела, обусловленная тепловым движением атомов. В первом приближении тепловая энергия равна
. На практике часто предполагается линейная связь теплового давления и тепловой энергии:
Данное уравнение называют уравнением состояния Ми-Грюнайзена, а функцию
- функцией Грюнайзена. Значение функции Грюнайзена в недеформированном состоянии тела называют коэффициентом Грюнайзена.
Уравнение состояния для кристаллов простой структуры
где
- номер координационной сферы, - их число, - число атомов на -ой координационной сфере, - радиус координационной сферы, - безразмерные константы решетки, - радиус первой координационной сферы в отсчетном положении, .Холодная кривая для потенциалов Леннарда-Джонса, Ми, Морзе
В случае учета только взаимодействий между ближайшими соседями холодная кривая имеет вид.
- Холодная кривая для потенциала Леннарда-Джонса:
- Холодная кривая для потенциала Ми:
- Холодная кривая для потенциала Морзе:
Здесь
- энергия связи, - длина связи, - параметр, характеризующий ширину потенциальной ямы; - параметры потенциала Ми.Коэффициент Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе
Выражение для параметра Грюнайзена для идеальных кристаллов с парными взаимодействиями в пространстве размерности
имеет вид:
где
- потенциал межатомного взаимодействия, - равновесное расстояние, - размерность пространства. Связь параметра Грюнайзена с параметрами потенциалов Леннарда-Джонса, Ми и Морзе представлена в таблице.решетка | размерность пространства | Потенциал Леннарда-Джонса | Потенциал Ми | Потенциал Морзе |
---|---|---|---|---|
Цепочка | ||||
Треугольная решетка | ||||
ГЦК, ОЦК | ||||
"Гиперрешетка" | ||||
Общая формула |
Функция Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе
В случае учета только взаимодействий между ближайшими соседями функция Грюнайзена имеет вид.
- Функция Грюнайзена для потенциала Леннарда-Джонса:
- Функция Грюнайзена для потенциала Ми:
- Функция Грюнайзена для потенциала Морзе:
Статьи
- Кривцов А.М., Кузькин В.А. Получение уравнений состояния идеальных кристаллов простой структуры // Известия РАН. Механика твердого тела. 2011, № 3, c. 67-82. (Аннотация, скачать pdf: Рус. 499 Kb, Eng. 529 Kb)