Курсовые работы по ТОМДЧ: 2013-2014

Материал из Department of Theoretical and Applied Mechanics
Версия от 20:35, 22 января 2014; Aleste (обсуждение | вклад) (Моделирование распространения поперечных волн в двумерном стрежне)

Перейти к: навигация, поиск


Предмет: "Теоретические основы метода динамики частиц"

Лектор: Виталий Андреевич Кузькин

Группа: 40510

Учебный год: 2013-2014

Семестр: осень 2013

Моделирование распространения поперечных волн в двумерном стрежне

Исполнители:: Степанов Алексей


Рассматривается стержень, имеющий толщину в 1 атом. Взаимодействие между атомами, находящимися на расстоянии меньшем, чем радиус обрезания, описывается законом

[math] \underline{F}(r) = k \frac{\left|\underline{r}\right|-a_{0}}{\left|\underline{r}\right|}\underline{r} [/math]

Здесь, [math]k[/math] — жесткость связи, [math]\underline{r}[/math] — радиус-вектор, соединяющий частицы и [math]a_{0}[/math] равновесное расстояние. Радиус обрезания в работе выбран: [math] r_{cut} = 1.5 [/math].

Было смоделировано несколько различных задач:

  • Отражение волны от свободного конца
  • Отражение волны от заделанного конца
  • Распространение волны без дисперсии
  • Распространение волны с дисперсией

Во всех этих задачах, граничный условия на другом конце выглядели так:

[math] \begin{cases} y(t) = A\sin\left(\frac{2\pi t}{T}\right), t \lt \frac{T}{2}\\ F = 0, t \gt \frac{T}{2} \end{cases} [/math]

Результаты:

  • Отражение волны от свободного конца

См. также