Статистические характеристики дискретных сред

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск

Страница находится в разработке

Терминология

  • Начальным и центральным моментом случайной величины [math]\displaystyle X[/math] называются, соответственно, величины
[math]\nu_k = \mathbb{E}\left[X^k\right], \qquad \mu_k = \mathbb{E}\left[(X - \mathbb{E}X)^k\right][/math]
где [math]\mathbb{E}[/math]математическое ожидание случайной величины, [math]k[/math] — степень момента.

Словарь

Ссылки


{{#ifgroup:sysop|

Приложение

Рассмотрим одномерную дискретную среду, сотоящую из [math]N[/math] частиц. Обозначим [math]u_n[/math] — некоторую характеристику частицы, например ее перемещение. Введем среднее значение характеристики как

[math]\left\lt u_n\right\gt = \sum_{n=1}^Nu_n[/math]

и среднее значение степени [math]k[/math]

[math]\left\lt u_n^k\right\gt = \sum_{n=1}^Nu_n^k[/math].

Если интерпретировать [math]u_n[/math] как случайную величину, то при достаточно большом [math]N[/math] величину [math]\left\lt u_n^k\right\gt [/math] можно называть [math]k[/math]-м моментом случайной величины.

}}