Ковалев Олег. Курсовой проект по теоретической механике
Содержание
Тема проекта
Вычисление энергии напряженного состояния для платоновых углеводородов
Постановка задачи
Рассчитать энергию напряженного состояния для молекул тетраэдрана, кубана и додекаэдрана.
Общие сведения о платоновых углеводородах
- Тетраэдран
Представляет собой химическое соединение
, в котором атомы углерода расположены в вершинах тетраэдра. Длина связи C-C равна 0,1522 нм, С-H равна 0,1068 нм. Проблема синтеза остается нерешенной.- Кубан
Представляет собой химическое соединение
, в котором атомы углерода расположены в вершинах куба. Длина связи C-C равна 0,157 нм, C-H равна 0,1082. Синтезированы.- Додекаэдран
Представляет собой химическое соединение
, в котором атомы углерода расположены в вершинах додекаэдра. Синтезированы.Решение
Существует три подхода расчета энергии напряжения: экспериментальный, основанный на вычислении тепловой энергии, образующейся при сжигании материала; приближенные квантовохимические расчеты; методом расчета механической модели молекулы [6]. В данной работе используется третий подход.
Рассмотрим следующую модель молекулы. Предположим, что связи между C-C можно заменить линейными пружинами жесткости
(соответствует графиту). Также, предположим, что связи C-C и С-С скреплены угловыми пружинами жесткости (соответствует алмазу). Тогда упрощенное уравнение расчета энергии напряжения в рамка механической модели будет иметь следующий вид [5]:
Здесь каждое слагаемое относится к отдельным компонентам напряжения: деформациям расстояний (
) и валентных углов . Тогда, в силу симметрии молекул, можно записать простые соотношение для энергии.- Для тэтраэдрана
где
- валентный угол в молекуле тетраэдрана, - валентный угол в недеформированном состоянии; - длина связи С-С в молекуле тетраэдрана, - длина связи C-C в алканах.- Для кубана
где
- валентный угол в молекуле кубана, - валентный угол в недеформированном состоянии; - длина связи С-С в молекуле кубана, - длина связи C-C в алканах.- Для додекаэдрана
где
- валентный угол между в молекуле додекаэдрана, - валентный угол в недеформированном состоянии; - длина связи С-С в молекуле додекаэдрана, - длина связи C-C в алканах.Обсуждение результатов и выводы
Молекула | Длина связи, nm | Валентный угол | Энергия напряжения, kcal/mol |
---|---|---|---|
Тэтраэдран | |
|
|
Кубан | |
|
|
Додекаэдран | |
|
|
Алмаз | |
|
|
Вещество | Энергия, kcal/mol |
---|---|
Пентан | |
Бензин | |
Тратил | |
В результате работы били вычислены энергии напряжения для тетраэдрана, кубана и додекаэдрана (значения приведены в таблице). Из таблицы видно, что с ростом валентного угла, растет энергия напряжения. Это связано с тем, что основной вклад в энергию вносят деформации валентных углов (у додекаэдрана наименьшая, у тетраэдрана наибольшая). Вклад межатомных связей мал, так как мала их деформация. Значение энергии для кубана отличается от значения 150 kcal/mol, приведенного в работе [6] на 43%, однако в работе не указан способ получения данного значения.
Ссылки по теме
- 1. Термическая устойчивость кубана C8H8. М.М. Маслов, Д.А. Лобанов, А.И. Подливаев, Л.А. Опенов. http://journals.ioffe.ru/ftt/2009/03/p609-612.pdf
- 2. Термическая устойчивость линейных олигомеров, построенных из кубиленовых единиц. М.М. Маслов. http://journals.ioffe.ru/ftt/2009/03/p609-612.pdf
- 3. Термическая устойчивость молекулы тетраэдрана C4H4. М.М. Маслов.
- 4. Description of elastic properties of diamond using angular atomic interaction. S. S. Khakalo A. M. Krivtsov O. S. Loboda.
- 5. Энергия напряжения, геометрическое строение и контакты спин - спинового взаимодействия циклических углеводородов. Козина М. П., Мастрюков В. С, Мильвицкая Ε. М. http://www.uspkhim.ru/php/getFT.phtml?jrnid=rc&paperid=2906&year_id=1982
- 6. Vibrations of the cubane molecule: inelastic neutron scattering study and theory. T. Yildirim. Kılıc, S. Ciraci, P.M. Gehring, D.A. Neumann, P.E. Eaton, T. Emrick. http://webster.ncnr.nist.gov/instruments/fans/fans_pdf_files/yildirim1999.pdf
- "Фуллерены С20 и С60"