Цепочка под действием внешней силы

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
Виртуальная лаборатория > Цепочка под действием внешней силы

Постановка задачи

Рассматриваются продольные и поперечные колебания цепочки, состоящей из материальных точек, соединённых линейными пружинками. На одну из частиц цепочки действует постоянная внешняя сила.
Граничные условия: первая и последняя материальные точки зафиксированы.
Уравнение движения имеет вид:

[math] {m}\ddot{\bf r}_{i} = {k}\left ({\bf r}_{i-1}-2{\bf r}_{i} + {\bf r}_{i+1} - {a}\left [\frac{{\bf r}_{i-1}-{\bf r}_{i}}{|{\bf r}_{i-1}-{\bf r}_{i}|} + \frac{{\bf r}_{i+1}-{\bf r}_{i}}{|{\bf r}_{i+1}-{\bf r}_{i}|} \right ]\right ) + {\bf F}_{i} [/math],

где [math] {k} [/math] - жёсткость одной пружинки, [math] {m} [/math] - масса одной частицы, [math] {\bf F}_{n} [/math] - сила, действующая на одну из частиц, [math] {\bf r}_{i} [/math] - радиус-вектор, направленный к каждой частице, [math] {a} [/math] - расстояние между двумя соседними частицами в начальный момент времени.

Период одного колебания:[math] {T}_{o} = 2{\pi}\sqrt\frac {m}{k} [/math]

Данное дифференциальное уравнение решалось численным методом интегрирования Эйлера.

Графическая реализация

Ссылки