Динамическая потеря устойчивости дискретного стержня при сжатии

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск

БАКАЛАВРСКАЯ РАБОТА
Автор работы: П. Д. Киселев
Руководитель: зам. зав. кафедры ТМ В. А. Кузькин

Введение

Деформация стержней (колонн, балок) является классической задачей для механики твердых тел. Около пятидесяти последних лет активно изучались упругие системы и связанная с ними динамическая потеря устойчивости, приводящая к разрушениям. Критические нагрузки относятся к наиболее тяжким последствиям природных и техногенных катастроф. Поэтому изучение динамических нагрузок всегда является объектом пристального внимания исследователей.

Постановка задачи

Рис.1 Цепочка частиц

Рассматривается цепочка в двумерном пространстве, состоящая из материальных точек, соединенная линейными и угловыми пружинами (Рис.1)
Уравнение движения: [math] m\bar{a} = \bar{F_c} + \bar{F_s} [/math]
Начальные условия: Частицы находятся на равновесном расстоянии a и обладают случайными начальными скоростями
[math]V_i = V_{rand}[/math] ; [math]x_i = ai[/math]; [math]y_i = 0[/math]
Граничные условия: Левый конец цепочки закреплен, правому задана постоянная скорость.
[math]u_1 = 0[/math]; [math]u_n = -Vt[/math]

В ходе работы решались следующие задачи:
1. Построение модели дискретного стержня и моделирование с разными параметрами: температура, скорость сжатия.
2. Обработка и анализ получившихся зависимостей
3. Сравнение с континуальной постановкой задачи. Задача Хоффа.

Виды нагружения

Для исследования задач о динамической потери устойчивости стержня имеются следующие варианты нагрузок:

1. Внезапное приложение силы (задача Ишлинского- Лаврентьева)
2. Удар твердого тела о стержень
3. Сжатие с постоянной скоростью (Задача Хоффа)