Фролова Ксения. Курсовой проект по теоретической механике

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск

Тема проекта

Моделирование стрельбы из лука
Модель лука

Постановка задачи

Существуют статические и динамические параметры конструкции лука.

  • статические параметры: сила натяжения тетивы, величина рабочего хода
  • динамические параметры: скорость распрямления дуг, амплитуда и длительность колебаний в дуге

В рамках данной курсовой работы необходимо составить модель лука. Интересующей нас величиной является дальность полета стрелы. Задачей является выведение и последующее рассмотрение зависимости этой дальности от вышеуказанных параметров конструкции лука.
Конкретизация:
Стоит рассмотреть две модификации лука: в первом случае можно принять тетиву за нерастяжимую нить, а плечи за плоские пружины изгиба или же за стрержни, поместив пружину между ними; во втором случае стоит учитывать растяжимость тетивы. Далее необходимо рассчитать дальность полета стрелы.

Краткий экскурс

Общий принцип
Причиной движения стрелы является переход потенциальной энергии деформируемого тела в кинетическую энергию полета снаряда. Реализация происходит посредством сравнительно медленного оттягивания тетивы, в течение которого накапливается потенциальная энергия упругости плеч лука, последующего спуска тетивы, когда плечи, разгибаясь, преобразуют накопленную энергию в кинетическую энергию полета стрелы, а также непосредственно полета стрелы, происходящего за счет полученной кинетической энергии.
Преобразование потенциальной энергии деформируемого тела в кинетическую энергию полета стрелы
Одним из основных боевых качеств лука является его силовая характеристика - зависимость силы натяжения, прикладываемой к тетиве, от смещения тетивы из положения равновесия. Изображая данную зависимость на графике, мы получаем динамическую кривую.
Пусть силовая характеристика известна (эту зависимость нетрудно получить экспериментальным путем, оттягивая тетиву на горизонтально покоящемся луке с помощью гирек разных масс). Тогда мы можем вычислить потенциальную энергию, накапливаемую за счет оттягивания тетивы путем взятия интеграла:
[math]\int^l_0F(s)ds[/math], где [math]l[/math] является величиной рабочего хода (максимальной величиной смещения тетивы)
Потенциальная энергия деформируемых плеч преобразуется не только в кинетическую энергию полета стрелы, но также и в кинетическую энергию тетивы, кинетическую энергию плеч, отдачу стрелку, колебания дуги, преодоление силы трения стрелы о "полочку".
Так, необходимо ввести в рассмотрение КПД лука:
[math]\eta = \frac{T}{U}[/math]*100%
Кинетическая энергия снаряда T:
[math]T = \frac{mv_0^2}{2} [/math]
Рассмотрим зависимость [math]\eta \sim m[/math]:
- если m очень мало, то выстрел "как бы холостой" [math]\Rightarrow \eta[/math] мало;
- если m слишком велико, то уменьшается ускорение, сообщаемое стреле, увеличивается отдача лука, увеличивается сила трения [math]\Rightarrow T \searrow \Rightarrow \eta \searrow[/math]
Таким образом, нужно искать баланс. Опыты показывают, что КПД составляет 30% - 85%
Начальная скорость стрелы обратно пропорциональна времени, а время, в течение которого накапливается потенциальная энергия для последующего перехода в кинетическую зависит от величины рабочего хода (или же просто от смещения тетивы, если лук натягивается не до "упора"), а также от массы стрелы. В современных луках начальная скорость составляет 40 - 80 м/с.
Мощность лука
[math]P = \frac{U}{t}[/math], [math]P \sim \frac{1}{t}, \frac{1}{m}[/math]
Так, для того, чтобы [math]P \searrow[/math], необходимо, чтобы [math]t \searrow, m \searrow[/math]
Для того, чтобы [math]v_0 \nwarrow [/math], необходимо, чтобы [math]t \searrow \Rightarrow l \searrow, m \searrow[/math], но при этом масса стрелы не должна быть слишком мала. Опыты показывают, что ее величина должна составлять 15 - 40 г
Баллистика
Наглядное сравнение стрельбы из огнестрельного оружия и стрельбы из лука. Дело в том, что в огнестрельном оружии не учитывается баллистика, в отличие от лука и арбалета.
Рассмотрим прямой выстрел(начальная скорость направлена параллельно земле):
Пусть известны следующие величины: [math]v_0 = 800[/math]м/с - скорость пули, [math]v_1 = 80[/math]м/с - скорость стрелы, расстояние s = 200 м
Время полета пули:[math]t = \frac{200}{800} = \frac{1}{4}[/math] с, время полета стрелы: [math]t = \frac{200}{80} = \frac{5}{2}[/math] с
[math]h = \frac{gt^2}{2} [/math], высота, на которую пуля окажется ниже мишени, составит [math]h = \frac{10}{32} = 0.3125[/math]м
Таким образом, если брать в расчет высоту снайпера, то пуля не "войдет в землю" и, в зависимости от масштабов мишени, может попасть в нее.
Высота же, на которую стрела окажется ниже мишени составит: [math]h = \frac{250}{82} = 31.25[/math]м, откуда сразу же видно, что, учитывая высоту стрелка, пуля войдет в землю и не достигнет мишени.
Факторы стрельбы

  • дальность стрельбы (450 м. - рекорд для спортивных луков);
  • дальность поражения (60 - 80 м для поражения защищенного доспехами человека, 250 - 180 м для незащищенного человека)

Существует эффективная прицельная дальность стрельбы - дистанция, на которой возможно гарантированное попадание стрелы в реальную подвижную цель, не успевающую выйти из зоны поражения. Эта величина составляет примерно 30 - 40 м)
Поправки

  • ветер;
  • подвижная цель;

Наглядное представление:
Пусть скорость ветра [math]v_0 \approx 1[/math] м/с, скорость стрелы [math]v_1 \approx 80[/math] м/с, пусть скорость ветра перпендикулярна начальной скорости стрелы
Рассмотрим дистанцию в 40 м
tg[math]\alpha = \frac{1}{80} = \frac{h}{40} \Rightarrow h = \frac{40}{80} = 0.5 [/math], где h - смещение

Решение

[math]M = \gamma*\varphi\triangle[/math]
[math]T*h = M = \gamma*\triangle\varphi[/math]
[math]T = \gamma*\frac{\triangle\varphi}{h}[/math]
[math]F = 2*T*\cos\beta[/math] = 2*[math]\gamma*\frac{\triangle\varphi}{h}*\cos\beta[/math]
[math]F = F(\triangle x)[/math] = [math]\frac{\partial F}{\partial 0}(0)\triangle x+ \frac{1}{2}*\frac{\partial^2F}{\partial \triangle x^2}(0)(\triangle x)^2 + \frac{1}{6}*\frac{\partial^3F}{\partial \triangle x^3}(0)(\triangle x)^3[/math]

  • Найдем [math]\angle\beta[/math], а точнее [math]\cos\beta[/math]:

По обобщенной теореме косинусов и при последующем упрощении получается, что [math]\cos\beta = \frac{\triangle x^2 + 2\triangle xx_0}{2\sqrt{l^2 - x_0^2}*(\triangle x + x_0)}[/math]

  • Найдем h - плечо силы натяжения тетивы:

[math]h = (\triangle x + x_0)\sin\beta \Rightarrow h = \frac{\sqrt{4(l^2 - x_0^2)^2*(\triangle x + x_0)^2 - (\triangle x^2 + 2\triangle xx_0)^2}}{2\sqrt{l^2 - x_0^2}}[/math]

  • Найдем [math]\triangle \varphi[/math]:

[math]\varphi = \chi - \gamma = 2*(\arcsin(\frac{\sqrt{l^2 - x_0^2}}{l^2}*(\sqrt{l^2 - (l^2 - x_0^2)\sin\beta^2}) -\sin\beta*x_0)))[/math]
[math][/math]
[math][/math]

Обсуждение результатов и выводы

Ссылки по теме

См. также