Васильев Максим Диплом — различия между версиями
ReFresh (обсуждение | вклад) (→Постановка задачи) |
ReFresh (обсуждение | вклад) (→Постановка задачи) |
||
Строка 24: | Строка 24: | ||
Смоделировать падение дмумерной цепочки в поле силы тяжести при отпускании одного из концов. Цепочка представляет собой соединенные между собой точечные массы. | Смоделировать падение дмумерной цепочки в поле силы тяжести при отпускании одного из концов. Цепочка представляет собой соединенные между собой точечные массы. | ||
− | + | ::m - масса частиц, | |
− | + | ::k - жесткость пружин , | |
− | + | ::l0 - равновесное расстояние, | |
− | + | ::<math>\mathbf{g}</math> - ускорение свободного падения (вектор). <math>g</math> - его модуль | |
− | + | ::N - количество частиц. | |
− | + | ::<math>\beta</math> - коэффициент вязкости | |
− | + | ::<math>\bf{K_1}</math> - количество движения материальной точки | |
− | + | ::<math>\bf{F}</math> - Сила, действующая на материальную точку | |
− | |||
===Математическая модель === | ===Математическая модель === | ||
Строка 40: | Строка 39: | ||
1. Баланс количества движения: | 1. Баланс количества движения: | ||
− | ::<math>\ | + | ::<math>\mathbf{\dot{K_1}} = \sum\mathbf{F}</math> |
::<math> \mathbf{\dot{K_1}} = (m\dot{\mathbf{R}}\dot{)} </math> | ::<math> \mathbf{\dot{K_1}} = (m\dot{\mathbf{R}}\dot{)} </math> |
Версия 16:49, 22 декабря 2022
Содержание
Исследование некоторых вопросов о колебаниях в кристаллических решетках
На данный момент сделано
1. Численно и аналитически решена задача с точечным единичным перемещением в центре бесконечной одномерной цепочки
2. Численно и аналитически решена задача с силой, приложенной в центре бесконечной цепочки
3. Численно и аналитически решена задача с силой, приложенной в центре двумерной бесконечной квадратной решетки
4. Численно и аналитически решена задача с парой сил, приложенных в различных направлениях к частицам, отстоящим друг от друга на определенное расстояние (1D цепочка)
5. Численно и аналитически решена задача с парой сил, приложенных в различных направлениях к частицам, отстоящим друг от друга на определенное расстояние (2D цепочка)
6. Численно и аналитически решена задача с силой, приложенной в центре бесконечной цепочки и одним закрепленным элементом
Таким образом получены соотношения позволяющие решить задачу с любыми начальными условиями и любыми силами, приложенными к любым частицам в одномерной и двумерной цепочках.
В рамках предмета "Дискретная механика" решена следующая задача
Постановка задачи
Смоделировать падение дмумерной цепочки в поле силы тяжести при отпускании одного из концов. Цепочка представляет собой соединенные между собой точечные массы.
- m - масса частиц,
- k - жесткость пружин ,
- l0 - равновесное расстояние,
- - ускорение свободного падения (вектор). - его модуль
- N - количество частиц.
- - коэффициент вязкости
- - количество движения материальной точки
- - Сила, действующая на материальную точку
Математическая модель
Как было сказано ранее, рассматривается двумерная цепочка с двумя закрепленными концами. Запишем для нее уравнения динамики:
1. Баланс количества движения:
2. Запишем равнодействующую сил, действующих на частицу:
3. Преобразуем полученные выражения и используем некоторые геометрические тождества:
4. Подставим все полученные соотношения в баланс количества движения и определим проекции сил на координатные оси
Отсюда получим:
5. Решать полученные уравнения движения будем при помощи симплектического (сохраняющего энергию) метода Верле c нулевыми начальными условиями и условием закрепления на конце
Таким образом сможем получить равновесное состояние цепочки при любом ее начальном положении. Для конкретики, в качестве начального расположения частиц будем брать параболу. После того, как достигнется состояние равновесия, граничное условие на правом конце убирается и дальше исследуется задача, озвученная выше.
Выводы
Смоделировано падение двумерной цепочки, подвешенной за два конца при отпускании одного из них. Показано, что отпущенный конец движется с ускорением, превышающим ускорение свободного падения, а также, при достижении этим элементом цепочки крайней точки его траектории, можно наблюдать эффект хлыста. В рамках решения данной задачи было написано приложение с использованием программы App Designer, входящего в пакет Matlab, ссылка на которое будет расположена ниже.
В ходе выполнения работы было установлено, что отпущенный конец цепи опережает свободно падающее тело не в силу каких-либо эффектов, связанных с процессами, происходящими в месте изгиба цепочки, а за счет ускорения, приобретенного им в начале падения в силу начального преднатяжения цепочки. Это ускорение приближенно равно N*g/2, где N - число частиц в цепочке, g - ускорение свободного падения. Это подтверждается тем, что график зависимости вертикального расстояния от крайней правой частицы цепочки до свободно падающего тела, брошенного одновременно с отпусканием правого края цепочки, ведет себя линейно (до момента достижения правым концом цепочки нижней точки падения, где проявляется эффект "хлыста" - о нем будет сказано ниже). Также это подтверждается характером графика зависимости a/g от времени, где a - ускорение падения правого края цепочки, а g - ускорение свободного падения. На нем видно, что в начальный момент времени (после отпускания правого край цепи), ускорение, как уже было сказано выше, приблизительно равно N*g/2, после чего они линейно и очень быстро (относительно остальных времен в системе) достигает значения 1, то есть ускорение правого края цепи равно ускорению свободного падения до момента появления "хлыстовых" эффектов.
Как было сказано выше, в процессе выполнения работы также удалось смоделировать эффект "хлыста" - резкое, скачкообразное увеличение ускорения цепочки при достижении ею нижней точки падения. Для разных параметров цепочки(массы, жесткости пружин, количества частиц, равноовесного расстояния между частицами) можно добиться ускорения в нижней точке в более, чем 50*g, где g - ускорение свободного падения.
Полезные ссылки
- http://tm.spbstu.ru/Курсовые_работы_по_ВМДС:_2022-2023 - курсовые работы студентов 4-го курса 2022-2023 года по курсу дискретной механики
- http://tm.spbstu.ru/Введение_в_механику_дискретных_сред - курс механики дискретных сред
- https://github.com/sideov/FallingChain - исходный код программы, написанной в ходе выполнения проекта