Васильев Максим Диплом — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Исследование некоторых вопросов о колебаниях в кристаллических решетках)
(На данный момент сделано)
Строка 6: Строка 6:
  
 
<div align = "center">{{#widget:Iframe |url = http://tm.spbstu.ru/htmlets/js2020/Borisenkov/u1D.gif}}</div>
 
<div align = "center">{{#widget:Iframe |url = http://tm.spbstu.ru/htmlets/js2020/Borisenkov/u1D.gif}}</div>
 +
 +
<div> <IMG SRC="http://tm.spbstu.ru/htmlets/js2020/Borisenkov/u1D.gif"> </div>
  
 
2. Численно и аналитически решена задача с силой, приложенной в центре бесконечной цепочки
 
2. Численно и аналитически решена задача с силой, приложенной в центре бесконечной цепочки

Версия 02:04, 22 декабря 2022

Исследование некоторых вопросов о колебаниях в кристаллических решетках

На данный момент сделано

1. Численно и аналитически решена задача с точечным единичным перемещением в центре бесконечной одномерной цепочки

<IMG SRC="http://tm.spbstu.ru/htmlets/js2020/Borisenkov/u1D.gif">

2. Численно и аналитически решена задача с силой, приложенной в центре бесконечной цепочки

3. Численно и аналитически решена задача с силой, приложенной в центре двумерной бесконечной квадратной решетки

4. Численно и аналитически решена задача с парой сил, приложенных в различных направлениях к частицам, отстоящим друг от друга на определенное расстояние (1D цепочка)

5. Численно и аналитически решена задача с парой сил, приложенных в различных направлениях к частицам, отстоящим друг от друга на определенное расстояние (2D цепочка)

6. Численно и аналитически решена задача с силой, приложенной в центре бесконечной цепочки и одним закрепленным элементом

Таким образом получены соотношения позволяющие решить задачу с любыми начальными условиями и любыми силами, приложенными к любым частицам в одномерной и двумерной цепочках.

В рамках предмета "Дискретная механика" решена следующая задача

Смоделировано падение двумерной цепочки, подвешенной за два конца при отпускании одного из них. Показано, что отпущенный конец движется с ускорением, превышающим ускорение свободного падения, а также, при достижении этим элементом цепочки крайней точки его траектории, можно наблюдать эффект хлыста. В рамках решения данной задачи было написано приложение с использованием программы App Designer, входящего в пакет Matlab, ссылка на которое будет расположена ниже.


В ходе выполнения работы было установлено, что отпущенный конец цепи опережает свободно падающее тело не в силу каких-либо эффектов, связанных с процессами, происходящими в месте изгиба цепочки, а за счет ускорения, приобретенного им в начале падения в силу начального преднатяжения цепочки. Это ускорение приближенно равно N*g/2, где N - число частиц в цепочке, g - ускорение свободного падения. Это подтверждается тем, что график зависимости вертикального расстояния от крайней правой частицы цепочки до свободно падающего тела, брошенного одновременно с отпусканием правого края цепочки, ведет себя линейно (до момента достижения правым концом цепочки нижней точки падения, где проявляется эффект "хлыста" - о нем будет сказано ниже). Также это подтверждается характером графика зависимости a/g от времени, где a - ускорение падения правого края цепочки, а g - ускорение свободного падения. На нем видно, что в начальный момент времени (после отпускания правого край цепи), ускорение, как уже было сказано выше, приблизительно равно N*g/2, после чего они линейно и очень быстро (относительно остальных времен в системе) достигает значения 1, то есть ускорение правого края цепи равно ускорению свободного падения до момента появления "хлыстовых" эффектов.

Как было сказано выше, в процессе выполнения работы также удалось смоделировать эффект "хлыста" - резкое, скачкообразное увеличение ускорения цепочки при достижении ею нижней точки падения. Для разных параметров цепочки(массы, жесткости пружин, количества частиц, равноовесного расстояния между частицами) можно добиться ускорения в нижней точке в более, чем 50*g, где g - ускорение свободного падения.