Цепочка под действием внешней силы — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Постановка задачи)
(Постановка задачи)
Строка 7: Строка 7:
  
 
::<math>
 
::<math>
{m}\ddot{\bf r}_{i} = {k}\left ({\bf r}_{i-1}-2{\bf r}_{i} + {\bf r}_{i+1} - {a}\left [\frac{{\bf r}_{i-1}-{\bf r}_{i}}{|{\bf r}_{i-1}-{\bf r}_{i}|} + \frac{{\bf r}_{i+1}-{\bf r}_{i}}{|{\bf r}_{i+1}-{\bf r}_{i}|} \right ]\right ) + {\bf F}_{i}</math>,  
+
{m}\ddot{\bf r}_{i} = {k}\left ({\bf r}_{i-1}-2{\bf r}_{i} + {\bf r}_{i+1} - {a}\left [\frac{{\bf r}_{i-1}-{\bf r}_{i}}{|{\bf r}_{i-1}-{\bf r}_{i}|} + \frac{{\bf r}_{i+1}-{\bf r}_{i}}{|{\bf r}_{i+1}-{\bf r}_{i}|} \right ]\right ) + {\bf F}_{i} </math>,  
</math>
+
 
 
где <math> {k} </math> - жёсткость одной пружинки, <math> {m} </math> - масса одной частицы, <math> {\bf F}_{n} </math> - сила, действующая на одну из частиц, <math> {\bf r}_{i} </math> - радиус-вектор, направленный к каждой частице
 
где <math> {k} </math> - жёсткость одной пружинки, <math> {m} </math> - масса одной частицы, <math> {\bf F}_{n} </math> - сила, действующая на одну из частиц, <math> {\bf r}_{i} </math> - радиус-вектор, направленный к каждой частице
 
 
 
  
 
Данное дифференциальное уравнение решалось [https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0 численным методом интегрирования Эйлера]
 
Данное дифференциальное уравнение решалось [https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0 численным методом интегрирования Эйлера]

Версия 02:24, 20 июня 2016

Виртуальная лаборатория>Цепочка с чередующимися массами

Постановка задачи

Рассматриваются продольные и поперечные колебания цепочки, состоящей из материальных точек, соединённых линейными пружинками. На одну из частиц цепочки действует постоянная внешняя сила. Граничные условия: первая и последняя материальные точки зафиксированы. Уравнение движения имеет вид:


[math] {m}\ddot{\bf r}_{i} = {k}\left ({\bf r}_{i-1}-2{\bf r}_{i} + {\bf r}_{i+1} - {a}\left [\frac{{\bf r}_{i-1}-{\bf r}_{i}}{|{\bf r}_{i-1}-{\bf r}_{i}|} + \frac{{\bf r}_{i+1}-{\bf r}_{i}}{|{\bf r}_{i+1}-{\bf r}_{i}|} \right ]\right ) + {\bf F}_{i} [/math],

где [math] {k} [/math] - жёсткость одной пружинки, [math] {m} [/math] - масса одной частицы, [math] {\bf F}_{n} [/math] - сила, действующая на одну из частиц, [math] {\bf r}_{i} [/math] - радиус-вектор, направленный к каждой частице

Данное дифференциальное уравнение решалось численным методом интегрирования Эйлера

Графичекая реализация

Ссылки