Цепочка под действием внешней силы — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Постановка задачи)
(Постановка задачи)
Строка 2: Строка 2:
  
 
==Постановка задачи==
 
==Постановка задачи==
Рассматриваются продольные и поперечные колебания цепочки, состоящей из материальных точек, соединённых линейными пружинками. На одну из частиц цепочки действует постоянная внешняя сила.
+
Рассматриваются продольные и поперечные колебания цепочки, состоящей из материальных точек, соединённых линейными пружинками. На одну из частиц цепочки действует постоянная внешняя сила.  Граничные условия: первая и последняя материальные точки зафиксированы.
 
Уравнение движения имеет вид:
 
Уравнение движения имеет вид:
  
Строка 13: Строка 13:
  
  
</math>
 
 
где <math> {l} = {\bf r}_{n-1}-{\bf r}_{n} </math> - перемещение,  <math>{\omega}_{0} =\sqrt\frac {\bf c}{\bf m} </math>,
 
<math> {\bf c}</math>  - жёсткость пружинок, <math> {\bf m}</math>  - масса частиц.
 
  
 
Данное дифференциальное уравнение решалось [https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0 численным методом интегрирования Эйлера]
 
Данное дифференциальное уравнение решалось [https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0 численным методом интегрирования Эйлера]

Версия 02:20, 20 июня 2016

Виртуальная лаборатория>Цепочка с чередующимися массами

Постановка задачи

Рассматриваются продольные и поперечные колебания цепочки, состоящей из материальных точек, соединённых линейными пружинками. На одну из частиц цепочки действует постоянная внешняя сила. Граничные условия: первая и последняя материальные точки зафиксированы. Уравнение движения имеет вид:


[math] {m}\ddot{\bf r}_{n} = {k}\left ({\bf r}_{n-1}-2{\bf r}_{n} + {\bf r}_{n+1} - {a}\left [\frac{{\bf r}_{n-1}-{\bf r}_{n}}{|{\bf r}_{n-1}-{\bf r}_{n}|} + \frac{{\bf r}_{n+1}-{\bf r}_{n}}{|{\bf r}_{n+1}-{\bf r}_{n}|} \right ]\right ) + {\bf F}_{n}, [/math]

где [math] {k} [/math] - жёсткость одной пружинки, [math] {m} [/math] - масса одной частицы, [math] {\bf F}_{n} [/math] - сила, действующая на одну из частиц, [math] {\bf r}_{n} [/math] - радиус-вектор, направленный к каждой частице



Данное дифференциальное уравнение решалось численным методом интегрирования Эйлера

Графичекая реализация

Ссылки