Динамическая потеря устойчивости дискретного стержня при сжатии — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Постановка задачи)
(Постановка задачи)
Строка 14: Строка 14:
 
<math> m\bar{a} = \bar{F_c} + \bar{F_s} </math>
 
<math> m\bar{a} = \bar{F_c} + \bar{F_s} </math>
 
Начальные условия: Частицы находятся на равновесном расстоянии a и обладают случайными начальными скоростями <br>
 
Начальные условия: Частицы находятся на равновесном расстоянии a и обладают случайными начальными скоростями <br>
<math> V_i = V_{rand} </math> ; <math> x_i = ai </math>; <math> y_i = 0 </math>
+
<math>V_i = V_{rand}</math> ; <math>x_i = ai</math>; <math>y_i = 0</math>

Версия 14:14, 19 июня 2016

БАКАЛАВРСКАЯ РАБОТА
Автор работы: П. Д. Киселев
Руководитель: зам. зав. кафедры ТМ В. А. Кузькин

Введение

Деформация стержней (колонн, балок) является классической задачей для механики твердых тел. Около пятидесяти последних лет активно изучались упругие системы и связанная с ними динамическая потеря устойчивости, приводящая к разрушениям. Критические нагрузки относятся к наиболее тяжким последствиям природных и техногенных катастроф. Поэтому изучение динамических нагрузок всегда является объектом пристального внимания исследователей.

Постановка задачи

Расположения датчиков. Вид сверху

Рассматривается цепочка в двумерном пространстве, состоящая из материальных точек, соединенная линейными и угловыми пружинами (Рис.1)
Уравнение движения: [math] m\bar{a} = \bar{F_c} + \bar{F_s} [/math] Начальные условия: Частицы находятся на равновесном расстоянии a и обладают случайными начальными скоростями
[math]V_i = V_{rand}[/math] ; [math]x_i = ai[/math]; [math]y_i = 0[/math]