Динамическая потеря устойчивости дискретного стержня при сжатии — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Новая страница: «'''БАКАЛАВРСКАЯ РАБОТА'''<br> ''Автор работы'': П. Д. Киселев<br> ''Руководитель'…»)
 
Строка 5: Строка 5:
 
==Введение==
 
==Введение==
  
На сегодняшний моделей позволяющих просто и качественно описывать поведения материалов, имеющих в своем строении трещины и швы, в которых может находится газ или жидкость нет. Однако, необходимость в такой модели есть во многих технических областях. Ярким примером является анализ поведения плотины и грунта под ней под действием внешних факторов, например, воды в водохранилище.
+
Деформация стержней (колонн, балок) является классической задачей для механики твердых тел. Около пятидесяти последних лет активно изучались упругие системы и связанная с ними динамическая потеря устойчивости, приводящая к разрушениям.
 +
Критические нагрузки относятся к наиболее тяжким последствиям природных и техногенных катастроф. Поэтому изучение динамических нагрузок всегда является объектом пристального внимания исследователей.
 +
 
 +
==Постановка задачи==
 +
[[Файл:Position of sensors.jpg‎|200px|thumb|right|Расположения датчиков. Вид сверху]]
 +
Рассматривается цепочка в двумерном пространстве, состоящая из материальных точек, соединенная линейными и угловыми пружинами (Рис.1)
 +
Уравнение движения:
 +
<math> m\bar{a} = \bar{F_c} + \bar{F_s}</math>

Версия 14:09, 19 июня 2016

БАКАЛАВРСКАЯ РАБОТА
Автор работы: П. Д. Киселев
Руководитель: зам. зав. кафедры ТМ В. А. Кузькин

Введение

Деформация стержней (колонн, балок) является классической задачей для механики твердых тел. Около пятидесяти последних лет активно изучались упругие системы и связанная с ними динамическая потеря устойчивости, приводящая к разрушениям. Критические нагрузки относятся к наиболее тяжким последствиям природных и техногенных катастроф. Поэтому изучение динамических нагрузок всегда является объектом пристального внимания исследователей.

Постановка задачи

Расположения датчиков. Вид сверху

Рассматривается цепочка в двумерном пространстве, состоящая из материальных точек, соединенная линейными и угловыми пружинами (Рис.1) Уравнение движения: [math] m\bar{a} = \bar{F_c} + \bar{F_s}[/math]