Цепочка частиц с вращательными степенями свободы — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
Строка 4: Строка 4:
  
 
Рассматривается совокупность твердых тел, образующих цепочки. Центры масс фиксированы. Взаимодействия осуществляются посредством балок Бернулли-Эйлера, соединяющих тела.
 
Рассматривается совокупность твердых тел, образующих цепочки. Центры масс фиксированы. Взаимодействия осуществляются посредством балок Бернулли-Эйлера, соединяющих тела.
 +
Дифференциальное уравнение изгиба балки:
 +
::<math>
 +
EJ\ddddot{\bf y} = 0
 +
</math>,
 +
где E - модуль юнга, J - полярный момент инерции.
 +
Момент взаимодействия:
 +
::<math>
 +
EJ\ddot{\bf y} = M
 +
</math>
 +
Уравнение движения:
 +
::<math>
 +
Q\ddot{\bf ϕ}_{k} = -2EJ/l({\bf ϕ}_{k-1}-2{\bf ϕ}_{k}+{\bf ϕ}_{k})-12EJ/l({\bf ϕ}_{k})
 +
</math>
  
 
== Реализации цепочки ==
 
== Реализации цепочки ==

Версия 20:54, 22 мая 2016

Виртуальная лаборатория > Цепочка частиц с вращательными степенями свободы

Краткое описание

Рассматривается совокупность твердых тел, образующих цепочки. Центры масс фиксированы. Взаимодействия осуществляются посредством балок Бернулли-Эйлера, соединяющих тела. Дифференциальное уравнение изгиба балки:

[math] EJ\ddddot{\bf y} = 0 [/math],

где E - модуль юнга, J - полярный момент инерции. Момент взаимодействия:

[math] EJ\ddot{\bf y} = M [/math]

Уравнение движения:

[math] Q\ddot{\bf ϕ}_{k} = -2EJ/l({\bf ϕ}_{k-1}-2{\bf ϕ}_{k}+{\bf ϕ}_{k})-12EJ/l({\bf ϕ}_{k}) [/math]

Реализации цепочки

  1 window.addEventListener("load", MainSystem, true);
  2 
  3 function MainSystem(){
  4 	var context_s = canvasSystem.getContext('2d');                
  5 	var context_g = canvasGraph.getContext('2d');                 
  6 	var context_g_1 = canvasGraph_1.getContext('2d');
  7 	var context_g_2 = canvasGraph_2.getContext('2d'); 
  8 
  9 	const Pi = 3.1415926;                   
 10 	const m0 = 1;                         
 11 	const T0 = 1;                         
 12 	const l0 = 1;
 13 	const E0 = 1;
 14 
 15 	//Width of canvas - width of browser
 16 	const distance_between_canvases = 5;    //5px
 17 	canvasSystem.width = document.body.clientWidth;  
 18 	canvasGraph.width = document.body.clientWidth / 2 - distance_between_canvases;
 19 	canvasGraph_1.width = document.body.clientWidth / 2 - distance_between_canvases;
 20 	canvasGraph_2.width = document.body.clientWidth;
 21 	
 22 	/* -- Used constans -- */
 23 	var Db = 0.1 * l0;			// Diameter of beam
 24 	const l = 30 * l0;				//Length of beam	
 25 	const a = 60 * l0;				//Length of object
 26 	var Db2 = Db * Db;
 27 	var J = Pi * Db2 * Db2 / 64;       //Polar moment of inertia
 28 	const E = 10000000 * E0; 				//Youngs modulus
 29 	var C = E * J / l; 
 30 	var N = parseFloat(number_of_objects.value) + 1;		//number_of_objects.value is number of objects
 31 	const m = 0.01 * m0;             //Mass of object
 32 	const Q = m * a * a / 12;  		//Moment of inertia
 33 	const w_c = Math.sqrt(2 * C / Q);   //Self frequency
 34 	
 35 	const fps = 50;                         // frames per second 
 36   	var spf = calcul_speed.value;           // steps per frame  
 37   	const frequency = 1000 / fps;			//frequency of call function - 1000 milliseconds/ fps
 38 	const dt  =  0.05 * T0 / fps; 	        //Step of integration  
 39 	
 40 	var scale = canvasSystem.width / N;  			//Scale of graph of system
 41 	var scale1 = canvasGraph_2.width / (N + 2);		//Scale of graph of angels
 42 	
 43 	//For wave
 44 	const n = 1;  //Number of full-wave 
 45 	var k_ = 2 * Pi / (l * (N - 2) * n);  //Spatial frequencyw
 46 	var w_ = Math.sqrt((-2 * C / Q * l * l) * k_ * k_ + (12 * C / Q));
 47 	
 48 	/* -- Used variables -- */ 
 49 	var K0 = 0; var P0 = 0; var E_p0 = 0; var L0 = 0; 		//Energies at  i-step
 50 	var K1 = 0; var P1 = 0; var E_p1 = 0; var L1 = 0;		// Energies at (i+1)-step
 51 	var E_m = 0;    					//Maximum of Energy at the first moment
 52  	var t = 0;					//Time
 53 	
 54 	var U = [];  		//Exact solution for wave
 55 	var shaft = [];   	//Objects
 56 
 57 	var pause = false;
 58 	const stretch_graphics = 3;	
 59 	var help = stretch_graphics * canvasGraph.width; 	//Scale of graph of energies 
 60 	var firstCalculation = true;
 61 	/* -- */
 62 	
 63 	//Restart the programm with new parameters
 64 	restart.onclick = function(){
 65 		N = parseFloat(number_of_objects.value) + 1; 	
 66 		scale = canvasSystem.width / N;
 67 		scale1 = canvasGraph_2.width / (N + 2);
 68 		spf = calcul_speed.value;
 69 		J = Pi * Db2 * Db2 / 64;       	
 70 		C = E * J / l;
 71 		
 72 		context_s.clearRect(0, 0, canvasSystem.width, canvasSystem.height);
 73 		context_g.clearRect(0, 0, canvasGraph.width, canvasGraph.height);
 74 		context_g_1.clearRect(0, 0, canvasGraph_1.width, canvasGraph_1.height);
 75 		context_g_2.clearRect(0, 0, canvasGraph_2.width, canvasGraph_2.height);
 76 		
 77 		shaft = [];
 78 		addSystem(shaft);
 79 		
 80 		firstCalculation = true;
 81 		t = 0;
 82 		P1 = 0;
 83 		K1 = 0;
 84 		E_m = 0;
 85 	}
 86 
 87 	//Pause
 88 	pause_button.onclick = function(){
 89 		pause = !pause;  
 90 		if(pause == false)
 91 			pause_button.value = "Pause";
 92 		else
 93 			pause_button.value = "Run";
 94 	}
 95 
 96 	//Calculate all parameters of system 
 97   	function control(){
 98     	if(!pause){
 99 			/* -- Find the maximum of energy -- */
100 			if(firstCalculation){
101 				for (var i = 1; i < N; i++){
102 					E_m += Q * shaft[i].w * shaft[i].w / 2;
103 				}
104 
105 				for (var i = 1; i < N; i++){
106 					E_m +=  C / 2 * (12 * shaft[i].fi * shaft[i].fi - ((shaft[i-1].fi - shaft[i].fi) * (shaft[i-1].fi - shaft[i].fi) + 
107 					(shaft[i].fi - shaft[i+1].fi) * (shaft[i].fi - shaft[i+1].fi)));
108 				}
109 				
110 				L0 = E_m;
111 				E_p0 = E_m / 2;		
112 				firstCalculation = false;
113 			}
114 			/* -- */
115 			
116 			physics();
117 			draw();
118 			
119 			if(t*help > canvasGraph.width){
120 				t = 0;
121 				context_g.clearRect(0, 0, canvasGraph.width, canvasGraph.height);
122 				context_g_1.clearRect(0, 0, canvasGraph_1.width, canvasGraph_1.height);
123 			}
124 			 
125 			draw_Graph_energy(t*help, (t + dt)*help);
126 			draw_Graph_angels();
127 			
128 			//exact_solution_for_wave(t*help);
129 			 
130 			P0 = P1;
131 			K0 = K1;
132 			L0 = L1;
133 			E_p0 = E_p1;
134 			E_p1 = 0;
135 			L1 = 0;
136 			P1 = 0;
137 			K1 = 0;
138 			t += dt;
139 		}
140   	}
141 
142 	//Physics - calculate the positions of objects
143 	function physics(){ 
144     	for (var s = 1; s <= spf; s++){
145     		//Periodic initial conditions	
146 			shaft[0].fi = shaft[N-1].fi;
147 			shaft[N].fi = shaft[1].fi;
148 			
149 			for (var i = 1; i < N; i++){
150 				shaft[i].M = - 2 * C * (shaft[i-1].fi + 2 * shaft[i].fi) - 2 * C * (2 * shaft[i].fi + shaft[i+1].fi);
151 			}
152 			
153 			for (var i = 1; i < N; i++){		
154 				shaft[i].w += shaft[i].M / Q * dt;
155 				shaft[i].fi += shaft[i].w * dt;				
156 			}
157 			
158 			for (var i = 1; i < N; i++){	
159 				shaft[i].M = 0;
160 			}
161    		}
162   	}
163 	 
164 	//Draw the graph of system
165 	function draw(){
166     	context_s.clearRect(0, 0, canvasSystem.width, canvasSystem.height); 
167  
168     	for (var i = 1; i < N; i++){
169 			context_s.beginPath();
170 			context_s.moveTo(shaft[i].x - (a/2) * Math.sin(shaft[i].fi), shaft[i].y - (a/2) * Math.cos(shaft[i].fi));
171 			context_s.lineTo(shaft[i].x + (a/2) * Math.sin(shaft[i].fi), shaft[i].y + (a/2) * Math.cos(shaft[i].fi));
172 			context_s.closePath();
173 			context_s.stroke();
174     	}
175   	}
176 	
177 	//Draw the graph of angels
178 	function draw_Graph_angels(){
179 		context_g_2.clearRect(0, 0, canvasGraph_2.width, canvasGraph_2.height);  
180 		
181 		for(var i = 0; i < N; i++){
182 			context_g_2.beginPath();	
183 			context_g_2.moveTo(scale1 * (i+1), -shaft[i].fi / (Pi/2) * canvasGraph_2.height / 2 + canvasGraph_2.height / 2);
184 			context_g_2.lineTo(scale1 * (i+2), -shaft[i+1].fi / (Pi/2) * canvasGraph_2.height / 2 + canvasGraph_2.height / 2);
185 			context_g_2.closePath();
186 			context_g_2.stroke();
187 		}	
188 	}
189 	
190 	//Draw the graphics of energies 
191 	function draw_Graph_energy(x0, x1){		
192 		//Potential
193 		context_g_1.beginPath();
194 		context_g_1.strokeStyle = "#FF0000";
195 		context_g_1.moveTo(x0, -P0 / E_m * canvasGraph_1.height + canvasGraph_1.height);	
196 		
197 		for (var i = 1; i < N; i++){
198 			P1 +=  C / 2 * (12 * shaft[i].fi * shaft[i].fi - ((shaft[i-1].fi - shaft[i].fi) * (shaft[i-1].fi - shaft[i].fi) + 
199 			(shaft[i].fi - shaft[i+1].fi) * (shaft[i].fi - shaft[i+1].fi)));
200 		}
201 		
202 		context_g_1.lineTo(x1, -P1 / E_m * canvasGraph_1.height + canvasGraph_1.height);
203 		context_g_1.closePath();
204 		context_g_1.stroke();
205 		
206 		//Kinetical
207 		context_g_1.beginPath();
208 		context_g_1.strokeStyle = "#000000";
209 		context_g_1.moveTo(x0, -K0 / E_m * canvasGraph_1.height + canvasGraph_1.height);	
210 		
211 		for (var i = 1; i < N; i++){
212 			K1 += Q * shaft[i].w * shaft[i].w / 2;
213 		}
214 		
215 		context_g_1.lineTo(x1, -K1 / E_m * canvasGraph_1.height + canvasGraph_1.height);
216 		context_g_1.closePath();
217 		context_g_1.stroke();
218 		
219 		//Full energy
220 		context_g_1.beginPath();
221 		context_g_1.strokeStyle = "blue";
222 		context_g_1.moveTo(x0, -E_p0 / E_m * canvasGraph.height + canvasGraph.height);	
223 		
224 		E_p1 = (K1 + P1) / 2;
225 
226 		context_g_1.lineTo(x1, -E_p1 / E_m * canvasGraph.height + canvasGraph.height);
227 		context_g_1.closePath();
228 		context_g_1.stroke();
229 		
230 		//Lagrangian
231 		context_g.beginPath();
232 		context_g.strokeStyle = "orange";
233 		context_g.moveTo(x0, -L0 / E_m * canvasGraph.height / 2 + canvasGraph.height / 2);	
234 		
235 		L1 = K1 - P1;
236 
237 		context_g.lineTo(x1, -L1 / E_m * canvasGraph.height / 2 + canvasGraph.height / 2);
238 		context_g.closePath();
239 		context_g.stroke();
240 	}		
241 	
242     //Add the system of objects
243   	function addSystem(shaft){
244   		for (var i = 0; i < N + 1; i++){
245 			var shaft_new = [];
246 			
247 			shaft_new.x = scale * i;          
248 			shaft_new.y = canvasSystem.height / 2; 		
249 			shaft_new.fi = 0;
250 			shaft_new.w = 0;	
251 			shaft_new.M = 0;
252 			shaft[shaft.length] = shaft_new;		   
253 		}
254 		
255 		/*  --Initial conditions-- */
256 		//Random velocities
257 		if(all_.checked){
258 			var average_w = 0;			//Average velocity 
259 			
260 			for (var i = 0; i < N; i++){	
261 				shaft[i].w = Math.random() * w_c;
262 				average_w += shaft[i].w;
263 			}
264 		
265 			average_w /= N;
266 		
267 			for (var i = 0; i < N; i++){
268 				shaft[i].w -= average_w;	
269 			}
270 		} 
271 		
272 		// N/10 - Central part of objects by sin
273 		if(part.checked){
274 			for (var i = Math.floor(-Math.floor(N / 10) / 2); i < Math.floor(Math.floor(N / 10) / 2); i++){
275 				shaft[Math.floor(N / 2) + i + 1].fi = 
276 				Math.sin(2 * Pi * (Math.floor(Math.floor(N / 10) / 2) - i) * (Math.floor(Math.floor(N / 10) / 2) + i) / N/2);
277 			}
278 		}
279 		
280 		//Central object 
281 		if(one.checked){
282 			shaft[Math.floor(N / 2)].w = w_c;
283 		}	
284 		
285 		//Wave
286 		if(wave.checked){	
287 			for (var i = 1; i < N; i++){
288 				shaft[i].fi = Math.sin(k_ * (l * i));
289 				shaft[i].w = -w_ * Math.cos(k_ * (l * i));
290 			}
291 		}	
292   	}
293 	
294 	//Exact solution for wave	
295 	function exact_solution_for_wave(t) {
296 		for (var i = 1; i < N; i++){
297 			U[i] = Math.sin(k_ * (l * i) - w_ * t / 200);
298 		}	
299 		//context_g_2.clearRect(0, 0, canvasGraph_2.width, canvasGraph_2.height);
300 		for(var i = 0; i < N; i++){
301 			context_g_2.beginPath();	
302 			context_g_2.moveTo(scale1 * (i+1), -U[i] / (Pi/2) * canvasGraph_2.height / 2 + canvasGraph_2.height / 2);
303 			context_g_2.lineTo(scale1 * (i+2), -U[i+1] / (Pi/2) * canvasGraph_2.height / 2 + canvasGraph_2.height / 2);
304 			context_g_2.closePath();
305 			context_g_2.stroke();
306 		}
307 	}	
308 	
309 	addSystem(shaft);       //Adding our system of objects
310 
311   	setInterval(control, frequency);  
312 }
 1 <!DOCTYPE html>
 2 <html>
 3 <body>
 4 	<canvas id="canvasSystem" width="1200" height="300" style="border:1px solid #000000;"></canvas><br><br>
 5 
 6 	Number of objects: <input type="number" id="number_of_objects" value="500" step=1 style="width: 5em">,
 7 	Calculation speed: <input type="range" id="calcul_speed" value="100" step=0.01 min=10 max=300><br>
 8 	
 9 	Initial conditions:<br>
10 	<input type="radio" checked="checked" name="initial_conditions" id="all_"/>Random velocities<br>
11 	<input type="radio"  name="initial_conditions" id="part"/>Central part of objects by sin<br>
12 	<input type="radio" name="initial_conditions" id="one"/>One object<br>
13 	<input type="radio" name="initial_conditions" id="wave"/>Wave<br>
14 	<input type="button" id="restart" value="Restart">
15 	<input type="button" id="pause_button" value="Pause"><br><br>
16 	
17 	Graphics:<br>
18 	<canvas id="canvasGraph" width="600" height="300" style="border:1px solid #000000;"></canvas>
19 	<canvas id="canvasGraph_1" width="600" height="300" style="border:1px solid #000000;"></canvas><br>
20 	L<hr align="left" width="50" size="3" color="orange" />
21 	E / 2<hr align="left" width="50" size="3" color="blue" />
22 	K<hr align="left" width="50" size="3" color="#000000" />
23 	P<hr align="left" width="50" size="3" color="#FF0000" /><br>
24 	
25 	Angles:<br>
26 	<canvas id="canvasGraph_2" width="1200" height="300" style="border:1px solid #000000;"></canvas><br>
27 	
28 	<script src="simulation.js"></script>
29 </body>
30 </html>

Скачать архив Текст программы на языке JavaScript (разработчик Александров Александр):