КП: Движение спутника в двойной системе — различия между версиями
Muschaknd (обсуждение | вклад) (→Решение) |
Muschaknd (обсуждение | вклад) (→Решение) |
||
Строка 64: | Строка 64: | ||
При этом графики такого поля будут выглядеть: | При этом графики такого поля будут выглядеть: | ||
[[Файл:2d2d.jpg|thumb|Контурный график|400px|left]] [[Файл:Line of Cassini.png|thumb|Сравнение с овалами Кассини|600px|left]] [[Файл:3d_1.jpg|thumb|3D график|400px|left]]<HR> | [[Файл:2d2d.jpg|thumb|Контурный график|400px|left]] [[Файл:Line of Cassini.png|thumb|Сравнение с овалами Кассини|600px|left]] [[Файл:3d_1.jpg|thumb|3D график|400px|left]]<HR> | ||
− | |||
− | |||
− | |||
Версия 21:41, 2 июня 2015
А.М. Кривцов > Теоретическая механика > Курсовые проекты ТМ 2015 > Движение спутника в двойной системе
Курсовой проект по Теоретической механике
Исполнитель: Мущак Никита
Группа: 09 (23604)
Семестр: весна 2015
Содержание
Формулировка задачи
Исследовать движение спутника двойной системы. Двойная система состоит из 2 неподвижных планет и спутника вращающегося вокруг них как показано на рисунке сверху. Определить стационарные орбиты спутника, а также устойчивость движения спутника.
Общие сведения по теме
Задачи подобного рода можно решать разными способами. Но решать данную задачу будем 2 способами :
с помощью уравнения Лагража 2-ого рода и как упрощенная задача 3-х тел
1 способ: уравнение Лагранжа 2-ого рода:
,где L - функция Лагранжа (лагранжиан),q- обобщенная координата, t — время, i— число степеней свободы механической системы
Функцию Лагранжа будем считать как разность кинетической и потенциальной энергий системы.
Дальнейшим дифференцированием получаем уравнение движения.
2 способ:записываем 2-ой закон Ньютона для данной задачи и получаем:
,где - гравитационная постоянная,m- массы планет,q - координаты планет.
Решение
Ланранжиан будет иметь вид: , где m - масса спутника, q - обобщенная координата, - потенциал гравитационного поля.
Подставляя полученное выражение в уравнение Лагранжа, можно получить уравнение движения:
Как можно заметить из уравнения движения масса спутника никак не влияет на траекторию.
Отдельного рассмотрения заслуживает конфигурация потенциального гравитационного поля.
При этом графики такого поля будут выглядеть:
Стационарные орбиты спутника будут близки к овалам Кассини
-это семейство кривых, которые задаются уравнением , где 2c-расстояние между фокусами, а- некоторая константа.
Частным случаем овалов Кассини является лемниската Бернулли, которая выглядит как знак бесконечности или восьмерка
В случае трех материальных тел на каждое из них действуют две силы со стороны двух других тел. Например, на тело m₁ действуют следующие силы (F₂ и F₃):
Сначала заметим, что результирующая силаF₁, действующая на тело m₁, будет суммой сил F₂ и F₃. Это значит, что F₁ = m₁a₁ = F₂ + F₃.
Обсуждение результатов и выводы
Скачать отчет:
Скачать презентацию:Движение спутника в двойной системе