Статистические характеристики дискретных сред — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(→Ссылки) |
|||
Строка 79: | Строка 79: | ||
|} | |} | ||
− | == | + | == Научные разделы, связанные со статистическим описанием дискретных сред == |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | * [https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0 Статистическая механика] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BE_%D1%80%D0%B0%D0%B2%D0%BD%D0%BE%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B8#.D0.A2.D0.B5.D0.BF.D0.BB.D0.BE.D1.91.D0.BC.D0.BA.D0.BE.D1.81.D1.82.D1.8C_.D1.82.D0.B2.D1.91.D1.80.D0.B4.D1.8B.D1.85_.D1.82.D0.B5.D0.BB Теорема о равнораспределении] кинетической энергии по степеням свободы | ||
+ | ** [https://ru.wikipedia.org/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%9B%D0%B8%D1%83%D0%B2%D0%B8%D0%BB%D0%BB%D1%8F Уравнение Лиувилля] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BF%D0%BE%D1%87%D0%BA%D0%B0_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B9_%D0%91%D0%BE%D0%B3%D0%BE%D0%BB%D1%8E%D0%B1%D0%BE%D0%B2%D0%B0 Цепочка уравнений Боголюбова] | ||
+ | ** [https://en.wikipedia.org/wiki/Fermi-Pasta-Ulam_problem Fermi–Pasta–Ulam problem] | ||
+ | ** [https://en.wikipedia.org/wiki/Toda_lattice Toda lattice] | ||
+ | * [https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0 Статистическая физика] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%A4%D0%BE%D0%BA%D0%BA%D0%B5%D1%80%D0%B0_%E2%80%94_%D0%9F%D0%BB%D0%B0%D0%BD%D0%BA%D0%B0 Уравнение Фоккера — Планка] | ||
+ | * [https://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BA%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0 Физическая кинетика] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%91%D0%BE%D0%BB%D1%8C%D1%86%D0%BC%D0%B0%D0%BD%D0%B0 Кинетическое уравнение Больцмана] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%92%D0%BB%D0%B0%D1%81%D0%BE%D0%B2%D0%B0 Уравнение Власова] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D0%BD%D0%BE%D0%BD Фонон] | ||
+ | * [https://ru.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BA%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0 Химическая кинетика] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%90%D1%80%D1%80%D0%B5%D0%BD%D0%B8%D1%83%D1%81%D0%B0 Уравнение Аррениуса] | ||
+ | * [https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D1%80%D0%BC%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0 Термодинамика] | ||
+ | * [https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%BD%D0%BE%D0%B2%D0%B5%D1%81%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D1%80%D0%BC%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0 Неравновесная термодинамика] | ||
+ | ** [https://en.wikipedia.org/wiki/Onsager_reciprocal_relations Onsager reciprocal relations] | ||
+ | * [https://en.wikipedia.org/wiki/Ergodic_theory Ergodic theory] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%AD%D1%80%D0%B3%D0%BE%D0%B4%D0%B8%D1%87%D0%BD%D0%BE%D1%81%D1%82%D1%8C Эргодичность], [https://ru.wikipedia.org/wiki/%D0%AD%D1%80%D0%B3%D0%BE%D0%B4%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%B3%D0%B8%D0%BF%D0%BE%D1%82%D0%B5%D0%B7%D0%B0 эргодическая гипотеза], [https://en.wikipedia.org/wiki/Ergodic_process ergodic process] | ||
* Discrete calculus and discrete analysis | * Discrete calculus and discrete analysis | ||
** [https://en.wikipedia.org/wiki/Finite_difference Finite difference] | ** [https://en.wikipedia.org/wiki/Finite_difference Finite difference] | ||
Строка 113: | Строка 107: | ||
** See also [https://en.wikipedia.org/wiki/Discrete_mathematics#Calculus_of_finite_differences.2C_discrete_calculus_or_discrete_analysis Discrete mathematics] | ** See also [https://en.wikipedia.org/wiki/Discrete_mathematics#Calculus_of_finite_differences.2C_discrete_calculus_or_discrete_analysis Discrete mathematics] | ||
− | * | + | == Разное == |
− | ** [https://en.wikipedia.org/wiki/Pearson_distribution Pearson distribution] — a four-parametric family of probability distributions that extend the normal law to include different skewness and kurtosis values [https://en.wikipedia.org/wiki/Normal_distribution#Extensions]. | + | |
− | + | * [https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE Вероятностное пространство] | |
− | + | * [https://en.wikipedia.org/wiki/Differential_entropy Differential entropy] | |
+ | * [https://en.wikipedia.org/wiki/Pearson_distribution Pearson distribution] — a four-parametric family of probability distributions that extend the normal law to include different skewness and kurtosis values [https://en.wikipedia.org/wiki/Normal_distribution#Extensions]. | ||
+ | * [https://en.wikipedia.org/wiki/Scale_parameter Scale parameter] for probability distributions. | ||
+ | * [https://en.wikipedia.org/wiki/R_%28programming_language%29 R (programming language)] — free software programming language and software environment for statistical computing and graphics. | ||
== Литература == | == Литература == | ||
Строка 136: | Строка 133: | ||
<toggledisplay status=hide showtext="Архив >>" hidetext="Архив <<" linkstyle="font-size:default"> | <toggledisplay status=hide showtext="Архив >>" hidetext="Архив <<" linkstyle="font-size:default"> | ||
− | == Приложение == | + | == Приложение к динамике цепочки == |
Рассмотрим одномерную дискретную среду, сотоящую из <math>N</math> частиц. Обозначим <math>u_n</math> — некоторую характеристику частицы, например ее перемещение. Введем среднее значение характеристики как | Рассмотрим одномерную дискретную среду, сотоящую из <math>N</math> частиц. Обозначим <math>u_n</math> — некоторую характеристику частицы, например ее перемещение. Введем среднее значение характеристики как | ||
Строка 148: | Строка 145: | ||
Если интерпретировать <math>u_n</math> как случайную величину, то при достаточно большом <math>N</math> величину <math>\left<u_n^k\right></math> можно называть <math>k</math>-м моментом случайной величины. | Если интерпретировать <math>u_n</math> как случайную величину, то при достаточно большом <math>N</math> величину <math>\left<u_n^k\right></math> можно называть <math>k</math>-м моментом случайной величины. | ||
+ | == Ссылки == | ||
+ | |||
+ | * Случайные величины и их характеристики | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0%D1%8F_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B0 Случайная величина] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE Вероятностное пространство] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D1%8B_%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B Моменты случайной величины] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D1%8B%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81 Случайный процесс] | ||
+ | ** [https://en.wikipedia.org/wiki/Random_vector Multivariate random variable] (random vector) | ||
== Терминология == | == Терминология == | ||
Версия 17:37, 23 ноября 2013
Страница находится в разработке
Обозначения и терминология
Обозначение | Русское название | English name |
---|---|---|
Случайная величина | Random variable | |
Случайный процесс | Stochastic process | |
Случайный вектор [1] | Multivariate random variable (random vector) | |
Функция распределения | Cumulative distribution function | |
Плотность распределения | Probability density function (distribution density) | |
Математическое ожидание | Expected value (mathematical expectation) | |
Характеристическая функция | Characteristic function | |
Производящая функция моментов | Moment-generating function | |
Начальный момент [2] | Raw moment [3] | |
Центральный момент [4] | Central moment [5] | |
Нормированный момент | Standardized moment | |
Полуинвариант (кумулянт) | Cumulant | |
Дисперсия | Variance | |
Среднеквадратическое отклонение | Standard deviation | |
Коэффициент асимметрии | Skewness | |
Коэффициент эксцесса | Kurtosis | |
Плотность нормального распределения | Normal distribution density |
Научные разделы, связанные со статистическим описанием дискретных сред
- Статистическая механика
- Теорема о равнораспределении кинетической энергии по степеням свободы
- Уравнение Лиувилля
- Цепочка уравнений Боголюбова
- Fermi–Pasta–Ulam problem
- Toda lattice
- Статистическая физика
- Физическая кинетика
- Химическая кинетика
- Термодинамика
- Неравновесная термодинамика
- Ergodic theory
- Discrete calculus and discrete analysis
Разное
- Вероятностное пространство
- Differential entropy
- Pearson distribution — a four-parametric family of probability distributions that extend the normal law to include different skewness and kurtosis values [6].
- Scale parameter for probability distributions.
- R (programming language) — free software programming language and software environment for statistical computing and graphics.
Литература
- Борн М. «Непрерывность, детерминизм, реальность» в книге «Размышления и воспоминания физика». М.: Мир, 1977. стр.162-187. (Скачать djvu: 2.38 Mb, страница для скачивания).
- Born M. «Continuity, determinism and reality», Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser, Bind 30, Nr.2, (1955) 1-26.
- — Впервые рассмотрена (согласно [7]) классическая статистическая механика одной частицы (1955 г.)
- Лукач Е. Характеристические функции. Пер. с анг. 1979. М.: Наука. 424 с. Оглавление
- Lukacs, E. (1970) Characteristic Functions (2nd Edition), Griffin, London. (Downlod djvu: 3.9 Mb, download page).
- — A negative result (Theorem 7.3.5): The cumulant generating function cannot be a finite-order polynomial of degree greater than 2. <toggledisplay status=hide showtext="Clarification >>" hidetext="Clarification <<" linkstyle="font-size:default"> (Given the results for the cumulants of the normal distribution, it might be hoped to find families of distributions for which κm = κm+1 = ... = 0 for some m > 3, with the lower-order cumulants (orders 3 to m − 1) being non-zero. From the theorem it follows that there are no such distributions. In other words: the normal distribution is the only distribution with a finite number (two) of non-zero cumulants.)</toggledisplay> <toggledisplay status=hide showtext="Origin >>" hidetext="Origin <<" linkstyle="font-size:default"> Данное утверждение является следствием теоремы, впервые доказанной Юзефом Марцинкевичем, польским математиком, погибшим во время Второй мировой войны: Marcinkiewicz, J. (1938). Sur une propriete de la loi de Gauss. Math. Zeitschr., 44, 612-618 (read online, download pdf: 397 Kb download page). Reprinted in J. Marcinkiewicz, Collected Papers. Panstwowe wydawnictwo Naukowe Warszawa, 1964. Abstract. </toggledisplay>
- Теория вероятностей и математическая статистика на сайте EqWorld
- Probability на сайте Белорусская научная библиотека
{{#ifgroup:sysop|
<toggledisplay status=hide showtext="Архив >>" hidetext="Архив <<" linkstyle="font-size:default">
Приложение к динамике цепочки
Рассмотрим одномерную дискретную среду, сотоящую из
частиц. Обозначим — некоторую характеристику частицы, например ее перемещение. Введем среднее значение характеристики каки среднее значение степени
- .
Если интерпретировать
как случайную величину, то при достаточно большом величину можно называть -м моментом случайной величины.Ссылки
- Случайные величины и их характеристики
Терминология
- Начальным и центральным моментом случайной величины называются, соответственно, величины
- где математическое ожидание случайной величины, — степень момента. —
Словарь
- Случайная величина — Random variable
- Математическое ожидание — Expected value (mathematical expectation)
- Дисперсия случайной величины — Variance
- Среднеквадратическое отклонение — Standard deviation
- Коэффициент асимметрии — Skewness
- Коэффициент эксцесса — Kurtosis
</toggledisplay>
}}