Статистические характеристики дискретных сред — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(→Литература) |
|||
Строка 17: | Строка 17: | ||
* [https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D0%B0%D1%81%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8 Коэффициент асимметрии] — [https://en.wikipedia.org/wiki/Skewness Skewness] | * [https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D0%B0%D1%81%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8 Коэффициент асимметрии] — [https://en.wikipedia.org/wiki/Skewness Skewness] | ||
* [https://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D1%86%D0%B5%D1%81%D1%81 Коэффициент эксцесса] — [https://en.wikipedia.org/wiki/Kurtosis Kurtosis] | * [https://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D1%86%D0%B5%D1%81%D1%81 Коэффициент эксцесса] — [https://en.wikipedia.org/wiki/Kurtosis Kurtosis] | ||
+ | |||
+ | == Таблица == | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | ! Обозначение | ||
+ | ! Русское название | ||
+ | ! English name | ||
+ | |- | ||
+ | | <math>X</math> | ||
+ | | [https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0%D1%8F_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B0 Случайная величина] | ||
+ | | [https://en.wikipedia.org/wiki/Random_variable Random variable] | ||
+ | |- | ||
+ | | <math>F(x) = \mathbb{P}( X \leqslant x )</math> | ||
+ | | [https://ru.wikipedia.org/wiki/%D0%9A%D1%83%D0%BC%D1%83%D0%BB%D1%8F%D1%82%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F Функция распределения] | ||
+ | | [https://en.wikipedia.org/wiki/Cumulative_distribution_function Cumulative distribution function] | ||
+ | |- | ||
+ | | <math>f(x) = F'(x)</math> | ||
+ | | [https://ru.wikipedia.org/wiki/%D0%9F%D0%BB%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Плотность распределения] | ||
+ | | [https://en.wikipedia.org/wiki/Probability_density_function Probability density function] (distribution density) | ||
+ | |- | ||
+ | | <math>\left<X\right> = \int_{-\infty}^\infty x f(x)dx</math> | ||
+ | | [https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BE%D0%B6%D0%B8%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5 Математическое ожидание] | ||
+ | | [https://en.wikipedia.org/wiki/Expected_value Expected value] (mathematical expectation) | ||
+ | |} | ||
== Ссылки == | == Ссылки == |
Версия 02:07, 22 ноября 2013
Страница находится в разработке
Терминология
- Начальным и центральным моментом случайной величины называются, соответственно, величины
- где математическое ожидание случайной величины, — степень момента. —
Словарь
- Случайная величина — Random variable
- Математическое ожидание — Expected value (mathematical expectation)
- Дисперсия случайной величины — Variance
- Среднеквадратическое отклонение — Standard deviation
- Коэффициент асимметрии — Skewness
- Коэффициент эксцесса — Kurtosis
Таблица
Обозначение | Русское название | English name |
---|---|---|
Случайная величина | Random variable | |
Функция распределения | Cumulative distribution function | |
Плотность распределения | Probability density function (distribution density) | |
Математическое ожидание | Expected value (mathematical expectation) |
Ссылки
- Случайные величины и их характеристики
- Науки
- Discrete calculus and discrete analysis
Литература
- Борн М. «Непрерывность, детерминизм, реальность» в книге «Размышления и воспоминания физика». М.: Мир, 1977. стр.162-187. (Скачать djvu: 2.38 Mb, страница для скачивания).
- Born M. «Continuity, determinism and reality», Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser, Bind 30, Nr.2, (1955) 1-26.
- — Впервые рассмотрена (согласно [1]) классическая статистическая механика одной частицы (1955 г.)
- Лукач Е. Характеристические функции. Пер. с анг. 1979. М.: Наука. 424 с. Оглавление
- Lukacs, E. (1970) Characteristic Functions (2nd Edition), Griffin, London. (Downlod djvu: 3.9 Mb, download page).
- — A negative result (Theorem 7.3.5): The cumulant generating function cannot be a finite-order polynomial of degree greater than 2. <toggledisplay status=hide showtext="Clarification >>" hidetext="Clarification <<" linkstyle="font-size:default"> (Given the results for the cumulants of the normal distribution, it might be hoped to find families of distributions for which κm = κm+1 = ... = 0 for some m > 3, with the lower-order cumulants (orders 3 to m − 1) being non-zero. From the theorem it follows that there are no such distributions.)</toggledisplay> <toggledisplay status=hide showtext="Origin >>" hidetext="Origin <<" linkstyle="font-size:default"> Данное утверждение является следствием теоремы, впервые доказанной Юзефом Марцинкевичем, польским математиком, погибшим во время Второй мировой войны: Marcinkiewicz, J. (1938). Sur une propriete de la loi de Gauss. Math. Zeitschr., 44, 612-618 (read online, download pdf: 397 Kb download page). Reprinted in J. Marcinkiewicz, Collected Papers. Panstwowe wydawnictwo Naukowe Warszawa, 1964. Abstract. </toggledisplay>
- Теория вероятностей и математическая статистика на сайте EqWorld
- Probability на сайте Белорусская научная библиотека
{{#ifgroup:sysop|
Приложение
Рассмотрим одномерную дискретную среду, сотоящую из
частиц. Обозначим — некоторую характеристику частицы, например ее перемещение. Введем среднее значение характеристики каки среднее значение степени
- .
Если интерпретировать
как случайную величину, то при достаточно большом величину можно называть -м моментом случайной величины.}}