Статистические характеристики дискретных сред — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(→Литература) |
|||
Строка 46: | Строка 46: | ||
== Литература == | == Литература == | ||
− | *Борн М. «Непрерывность, детерминизм, реальность» в книге «Размышления и воспоминания физика». М.: Мир, 1977. стр.162-187. | + | *Борн М. «Непрерывность, детерминизм, реальность» в книге «Размышления и воспоминания физика». М.: Мир, 1977. стр.162-187. (Скачать djvu: [http://padabum.com/x.php?id=28958 2.38 Mb], [http://padabum.com/d.php?id=28958 страница для скачивания]). |
:Born M. «Continuity, determinism and reality», Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser, Bind 30, Nr.2, (1955) 1-26. | :Born M. «Continuity, determinism and reality», Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser, Bind 30, Nr.2, (1955) 1-26. | ||
− | :— Впервые рассмотрена (согласно [https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0]) классическая статистическая механика одной частицы (1955 г.) | + | :— Впервые рассмотрена (согласно [https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0]) классическая статистическая механика одной частицы (1955 г.) |
+ | |||
+ | * Лукач Е. Характеристические функции. Пер. с анг. 1979. М.: Наука. 424 с. [http://urss.ru/cgi-bin/db.pl?lang=Ru&blang=ru&page=Book&id=24313#FF1 Оглавление] | ||
+ | :Lukacs, E. (1970) Characteristic Functions (2nd Edition), Griffin, London. (Downlod djvu: 3.9 Mb, [http://lib.org.by/info/M_Mathematics/MV_Probability/Lukacs%20E.%20Characteristic%20functions%20%282ed.,%20Griffin,%201970%29%28KA%29%28600dpi%29%28T%29%28360s%29_MV_.djvu download page]). | ||
+ | :— A negative result (Theorem 7.3.5): '''The [https://en.wikipedia.org/wiki/Cumulant#cite_ref-3 cumulant] generating function cannot be a finite-order polynomial of degree greater than 2.''' <toggledisplay status=hide showtext=">>" hidetext="<<" linkstyle="font-size:default"> (Given the results for the cumulants of the [https://en.wikipedia.org/wiki/Normal_distribution normal distribution], it might be hoped to find families of distributions for which κ<sub>''m''</sub> = κ<sub>''m''+1</sub> = ... = 0 for some ''m'' > 3, with the lower-order cumulants (orders 3 to ''m'' − 1) being non-zero. From the theorem it follows that there are no such distributions.)</toggledisplay> | ||
+ | |||
+ | * [http://eqworld.ipmnet.ru/ru/library/mathematics/probability.htm Теория вероятностей и математическая статистика] на сайте [http://eqworld.ipmnet.ru/indexr.htm EqWorld] | ||
+ | * [http://lib.org.by/_djvu/M_Mathematics/MV_Probability/ Probability] на сайте [http://lib.org.by/ Белорусская научная библиотека] | ||
Версия 12:11, 21 ноября 2013
Страница находится в разработке
Терминология
- Начальным и центральным моментом случайной величины называются, соответственно, величины
- где математическое ожидание случайной величины, — степень момента. —
Словарь
- Случайная величина — Random variable
- Математическое ожидание — Expected value (mathematical expectation)
- Дисперсия случайной величины — Variance
- Среднеквадратическое отклонение — Standard deviation
- Коэффициент асимметрии — Skewness
- Коэффициент эксцесса — Kurtosis
Ссылки
- Случайные величины и их характеристики
- Науки
- Discrete calculus and discrete analysis
Литература
- Борн М. «Непрерывность, детерминизм, реальность» в книге «Размышления и воспоминания физика». М.: Мир, 1977. стр.162-187. (Скачать djvu: 2.38 Mb, страница для скачивания).
- Born M. «Continuity, determinism and reality», Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser, Bind 30, Nr.2, (1955) 1-26.
- — Впервые рассмотрена (согласно [1]) классическая статистическая механика одной частицы (1955 г.)
- Лукач Е. Характеристические функции. Пер. с анг. 1979. М.: Наука. 424 с. Оглавление
- Lukacs, E. (1970) Characteristic Functions (2nd Edition), Griffin, London. (Downlod djvu: 3.9 Mb, download page).
- — A negative result (Theorem 7.3.5): The cumulant generating function cannot be a finite-order polynomial of degree greater than 2. <toggledisplay status=hide showtext=">>" hidetext="<<" linkstyle="font-size:default"> (Given the results for the cumulants of the normal distribution, it might be hoped to find families of distributions for which κm = κm+1 = ... = 0 for some m > 3, with the lower-order cumulants (orders 3 to m − 1) being non-zero. From the theorem it follows that there are no such distributions.)</toggledisplay>
- Теория вероятностей и математическая статистика на сайте EqWorld
- Probability на сайте Белорусская научная библиотека
{{#ifgroup:sysop|
Приложение
Рассмотрим одномерную дискретную среду, сотоящую из
частиц. Обозначим — некоторую характеристику частицы, например ее перемещение. Введем среднее значение характеристики каки среднее значение степени
- .
Если интерпретировать
как случайную величину, то при достаточно большом величину можно называть -м моментом случайной величины.}}