Статистические характеристики дискретных сред — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(→Ссылки) |
(→Ссылки) |
||
Строка 22: | Строка 22: | ||
** [https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE Вероятностное пространство] | ** [https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE Вероятностное пространство] | ||
** [https://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D1%8B_%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B Моменты случайной величины] | ** [https://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D1%8B_%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B Моменты случайной величины] | ||
+ | ** [https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D1%8B%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81 Случайный процесс] | ||
+ | ** [https://en.wikipedia.org/wiki/Random_vector Multivariate random variable] (random vector) | ||
* Науки | * Науки | ||
Строка 29: | Строка 31: | ||
** [https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0 Статистическая физика] | ** [https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0 Статистическая физика] | ||
** [https://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BA%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0 Физическая кинетика] | ** [https://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BA%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0 Физическая кинетика] | ||
+ | *** [https://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%91%D0%BE%D0%BB%D1%8C%D1%86%D0%BC%D0%B0%D0%BD%D0%B0 Кинетическое уравнение Больцмана] | ||
** [https://ru.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BA%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0 Химическая кинетика] | ** [https://ru.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BA%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0 Химическая кинетика] | ||
+ | *** [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%90%D1%80%D1%80%D0%B5%D0%BD%D0%B8%D1%83%D1%81%D0%B0 Уравнение Аррениуса] | ||
* Discrete calculus and discrete analysis | * Discrete calculus and discrete analysis |
Версия 23:46, 19 ноября 2013
Страница находится в разработке
Терминология
- Начальным и центральным моментом случайной величины называются, соответственно, величины
- где математическое ожидание случайной величины, — степень момента. —
Словарь
- Случайная величина — Random variable
- Математическое ожидание — Expected value (mathematical expectation)
- Дисперсия случайной величины — Variance
- Среднеквадратическое отклонение — Standard deviation
- Коэффициент эксцесса — Kurtosis
Ссылки
- Случайные величины и их характеристики
- Науки
- Discrete calculus and discrete analysis
Литература
- Борн М. «Непрерывность, детерминизм, реальность» в книге «Размышления и воспоминания физика». М.: Мир, 1977. стр.162-187.
- Born M. «Continuity, determinism and reality», Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser, Bind 30, Nr.2, (1955) 1-26.
- — Впервые рассмотрена (согласно [1]) классическая статистическая механика одной частицы (1955 г.) (Скачать djvu: 2.38 Mb, страница для скачивания).
{{#ifgroup:sysop|
Приложение
Рассмотрим одномерную дискретную среду, сотоящую из
частиц. Обозначим — некоторую характеристику частицы, например ее перемещение. Введем среднее значение характеристики каки среднее значение степени
- .
Если интерпретировать
как случайную величину, то при достаточно большом величину можно называть -м моментом случайной величины.}}