КП: Джамперы — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
Строка 32: Строка 32:
  
 
== Общие сведения по теме ==
 
== Общие сведения по теме ==
 +
'''Постановка задачи:'''
 +
* ''Дано:''
 +
** <math>m</math> - масса пользователя;<br>
 +
** <math>l_0</math>  - начальная длина пружины;<br>
 +
* ''Найти:''
 +
** <math>c</math> - жесткость пружины оптимально подходящую под вес пользователя;<br>
 +
** <math>h</math> - высота прыжка (считая от </math>l_0</math><br> - высоты распрямленной пружины (без нагрузки);<br>
 +
** <math>t_p</math> - время полета. <br>
 +
Считаем, что оптимальные параметры - чем выше прыжок (время полета больше), тем лучше.<br>
 +
* ''Начальные условия:''
 +
** <math>x(0) = (l_0 - eps_m)</math> - координата в начальный момент времени, где <math>eps_m</math> - максимальное сжатие пружины;<br>
 +
** <math>x^{\prime}(0) = 0</math> - скорость в начальном положении <math>0</math>; <br>
 +
 +
 +
'''В задаче рассматриваем две части движения: '''
 +
* Пружина касается земли, т.е. действует сила упругости
 +
** Исходное уравнение (1): <math>mx^{\prime\prime} \ =\ c(l_0 - x) - mg</math><br>
 +
* Пружина не касается земли, т.е. тело находится в полете
 +
** Исходное уравнение (2): <math>mx^{\prime\prime} \ =\ - mg</math><br>
  
 
== Решение ==
 
== Решение ==
 +
Решая исходное уравнение (1) получаем решение вида:<br>
 +
<math>x = c_1cos({\sqrt{\frac{c}{m}}}t) + c_2sin({\sqrt{\frac{c}{m}}}t) + \frac{cl_0 - mg}{c}</math><br>
 +
И по задаче Коши высчитываем окончательное уравнение: <br>
 +
<math>x = {(\frac{mg}{c} - eps_m)}cos({\sqrt{\frac{c}{m}}}t) + \frac{cl_0 - mg}{c}</math><br>
 +
 +
  
 
== Обсуждение результатов и выводы ==
 
== Обсуждение результатов и выводы ==

Версия 12:08, 28 мая 2013

А.М. Кривцов > Теоретическая механика > Курсовые проекты 2013 > Джамперы


Курсовой проект по Теоретической механике

Исполнитель: Богданова Ольга

Группа: 07 (20510)

Семестр: весна 2013

Аннотация проекта

На рынке развлечений джамперы появились совсем недавно, но сразу пришлись по душе любителям экстрима различных категорий и возрастов, спортсменам, акробатам. Не обходят вниманием летний аттракцион джампер и клипмейкеры, режиссеры фильмов, создатели телевизионных шоу, пользователи сети интернет. О том, что джамперы (цена их доступна покупателям с различным уровнем доходов) полезны для здоровья, заговорили и врачи. Они отмечают, что регулярные физические упражнения на джамперах укрепляют сердечнососудистую систему, развивают организм и совершенствуют тело в целом, положительно влияют на общее состояние кожных покровов, способствуют снижению лишнего веса.

Подсчитано, что за 30 минут можно расходовать от 600 до 1000 ккал, что позволяет на протяжении 2 недель сбросить 7-8 кг лишнего веса. С их помощью даже корректируют осанку: при пользовании устройств активизируется деятельность всего мышечного аппарата человека (участвует спина и грудная клетка, живот и руки), способствуя ускорению метаболических (обмен веществ) процессов в организме.

Джамперы – щадящий суставы тренажер, так как в их конструкциях использованы амортизирующие пружины. Они уменьшают силу толчков и ударов, снижают нагрузки на организм (суставы, связки и сам позвоночник). При этом, сравнивая тренировки на джамперах и обычный бег, врачи отмечают, что первые в пять раз эффективнее: для укрепления мускулатуры всего тела достаточно нескольких недель регулярных тренировок. Подходит экстремальные аттракционы и для занятий фитнесом.

В Китае человек в джамперах – довольно привычное явление. Нужно отметить, что спортсмен может сам устанавливать и корректировать интенсивность нагрузок, продолжительность и периодичность занятий.

описание взято с сайта

Постановка задачи

  • Разобраться в строении джампера
  • Сделать математическую модель
    • Определить, какая оптимальная упругость пружины для каждого веса
    • Определить, какие материалы лучше всего использовать
  • Сделать анализ рынка материалов, пригодных для построения прототипа
  • Построить джамперы по разработанной модели

Общие сведения по теме

Постановка задачи:

  • Дано:
    • [math]m[/math] - масса пользователя;
    • [math]l_0[/math] - начальная длина пружины;
  • Найти:
    • [math]c[/math] - жесткость пружины оптимально подходящую под вес пользователя;
    • [math]h[/math] - высота прыжка (считая от </math>l_0</math>
      - высоты распрямленной пружины (без нагрузки);
    • [math]t_p[/math] - время полета.

Считаем, что оптимальные параметры - чем выше прыжок (время полета больше), тем лучше.

  • Начальные условия:
    • [math]x(0) = (l_0 - eps_m)[/math] - координата в начальный момент времени, где [math]eps_m[/math] - максимальное сжатие пружины;
    • [math]x^{\prime}(0) = 0[/math] - скорость в начальном положении [math]0[/math];


В задаче рассматриваем две части движения:

  • Пружина касается земли, т.е. действует сила упругости
    • Исходное уравнение (1): [math]mx^{\prime\prime} \ =\ c(l_0 - x) - mg[/math]
  • Пружина не касается земли, т.е. тело находится в полете
    • Исходное уравнение (2): [math]mx^{\prime\prime} \ =\ - mg[/math]

Решение

Решая исходное уравнение (1) получаем решение вида:
[math]x = c_1cos({\sqrt{\frac{c}{m}}}t) + c_2sin({\sqrt{\frac{c}{m}}}t) + \frac{cl_0 - mg}{c}[/math]
И по задаче Коши высчитываем окончательное уравнение:
[math]x = {(\frac{mg}{c} - eps_m)}cos({\sqrt{\frac{c}{m}}}t) + \frac{cl_0 - mg}{c}[/math]


Обсуждение результатов и выводы

Ссылки по теме

См. также