Васильев Максим Диплом — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Исследование некоторых вопросов о колебаниях в кристаллических решетках)
(Исследование некоторых вопросов о колебаниях в кристаллических решетках)
Строка 4: Строка 4:
  
 
1. Численно и аналитически решена задача с точечным единничным перемещением в центре бесконечной одномерной цепочки
 
1. Численно и аналитически решена задача с точечным единничным перемещением в центре бесконечной одномерной цепочки
{{#widget:Iframe |url = http://tm.spbstu.ru/htmlets/js2020/Borisenkov/fotos/u1D.gif width= 212 | height = 209}}
+
 
 +
{{#widget:Iframe |url = http://tm.spbstu.ru/htmlets/js2020/Borisenkov/u1D.gif width= 212 | height = 209}}
  
 
2. Численно и аналитически решена задача с силой, приложенной в центре бесконечной цепочки
 
2. Численно и аналитически решена задача с силой, приложенной в центре бесконечной цепочки

Версия 17:08, 10 декабря 2022

Исследование некоторых вопросов о колебаниях в кристаллических решетках

На данный момент сделано

1. Численно и аналитически решена задача с точечным единничным перемещением в центре бесконечной одномерной цепочки

2. Численно и аналитически решена задача с силой, приложенной в центре бесконечной цепочки

3. Численно и аналитически решена задача с силой, приложенной в центре двумерной бесконечной квадратной решетки

4. Численно и аналитически решена задача с парой сил, приложенных в различных направлениях к частицам, отстоящим друг от друга на определенное расстояние (1D цепочка)

5. Численно и аналитически решена задача с парой сил, приложенных в различных направлениях к частицам, отстоящим друг от друга на определенное расстояние (2D цепочка)

6. Численно и аналитически решена задача с силой, приложенной в центре бесконечной цепочки и одним закрепленным элементом

Таким образом получены соотношения позволяющие решить задачу с любыми начальными условиями и любыми силами, приложенными к любым частицам в одномерной и двумерной цепочках.

В рамках предмета дискретная механика решена следующая задача

Смоделировано падение двумерной цепочки, подвешенной за два конца при отпускании одного из них. Показано, что отпущенный конец движется с ускорением, превышающим ускорение свободного падения, а также, при достижении этим элементом цепочки крайней точки его траектории, можно наблюдать эффект хлыста. В рамках решения данной задачи было написано приложение с использованием программы App Designer, ссылка на которое будет расположена ниже.