Высокоскоростной удар — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Постановка задачи)
(Решение)
Строка 48: Строка 48:
 
* Случай 2:пуля застревает в преграде
 
* Случай 2:пуля застревает в преграде
 
* Случай 3:пуля проходит насквозь преграды
 
* Случай 3:пуля проходит насквозь преграды
 +
При построении модели были приняты следующие значения параметров:
 +
<math>a=1</math>
 +
<math>D=1</math>
 +
<math>m=1</math>
  
 
===Случай 1===
 
===Случай 1===

Версия 12:18, 11 декабря 2019

Курсовой проект по Механике дискретных сред

Исполнитель: Пальчиковская Наталия

Группа: 3630103/60101

Семестр: осень 2019


Постановка задачи

Построить модель взаимодействия ударника и препятствия. Исследовать зависимость глубины проникания в преграду от скорости ударника.

Построение модели

Поскольку задача состоит в исследовании зависимости глубины проникания от скорости ударника, будем рассматривать поперечное сечение преграды. Пусть это сечение представляет собой двумерную область с треугольной кристаллической решеткой(рис.1). Ударник так же моделируем, как некоторую совокупность частиц. (Введенные обозначения показаны на рисунке 2)

Рисунок 1. Модель преграды и ударника
Рисунок 2. Обозначения

Предположим, что все частицы взаимодействуют посредством потенциала Леннарда-Джонса.

Теоретическая сводка

Потенциал Леннарда-Джонса

Парный силовой потенциал взаимодействия. Определяется формулой:

[math] \varPi(r) = D\left[\left(\frac{a}{r}\right)^{12}-\left(\frac{a}{r}\right)^{6}\right], [/math]

где

  • [math]r[/math] — расстояние между частицами,
  • [math]D[/math] — энергия связи,
  • [math]a[/math] — длина связи.

Потенциал является частным случаем потенциала Ми и не имеет безразмерных параметров.

Сила взаимодействия, соответствующая потенциалу Леннард-Джонса, вычисляется по формуле

[math] F(r) = \frac{12D}{a}\left[-\left(\frac{a}{r}\right)^{13} + \left(\frac{a}{r}\right)^{7}\right]. [/math]


Решение

В зависимости от скорости ударника возможны три результата взаимодействия.

  • Случай 1:пуля не деформирует преграду
  • Случай 2:пуля застревает в преграде
  • Случай 3:пуля проходит насквозь преграды

При построении модели были приняты следующие значения параметров: [math]a=1[/math] [math]D=1[/math] [math]m=1[/math]

Случай 1

При малых скоростях ударника (не характерных для реальной пули) преграда не деформируется, пуля прилипает к стенке преграды.

Пуля01.gif

Случай 2

При малых скоростях пули в результате взаимодействия деформируется препятствие, в нем застревает ударник.

Пуля5.gif

Случай 3

При высоких скоростях ударника наблюдается прохождение пули насквозь препятствия.

Пуля10.gif