Мещерский 48.26 — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(top)
Строка 1: Строка 1:
'''Задача 48.36 из сборника задач Мещерского:''' С помощью языка программирования JavaScript смоделировать систему, состоящую из тележки и прикреплённого к ней на стержне груза.
+
'''Задача 48.26 из сборника задач Мещерского:''' С помощью языка программирования JavaScript смоделировать систему блоков с грузом.
  
 
==Формулировка задачи==
 
==Формулировка задачи==
 +
Однородная нить, к концу которой привязан груз А массы m, огибает неподвижный блок В, охватывает подвижный блок С, поднимается вверх на неподвижный блок D и проходит параллельно горизонтальной плоскости, где к ее концу привязан груз Е массы m. К оси блока С прикреплен прикреплен груз К массы <math>{m_1}</math>. Коэффициент трения скольжения груза Е о горизонтальную плоскость равен f. При каком условии груз К будет опускаться вниз, если начальные скорости всех грузов равнялись нулю? Найти ускорение груза К. Массами блоков и нити пренебречь.
  
 
==Решение задачи==
 
==Решение задачи==
Строка 10: Строка 11:
 
  Q - обобщенные силы
 
  Q - обобщенные силы
 
  S - независимые обобщенные координаты
 
  S - независимые обобщенные координаты
 +
 +
В данной задаче в качестве обобщенных координат примем расстояния <math>S_1</math> и <math>S_2</math>
 +
 +
 +
Представим:
 +
 +
С учётом выбранных направлений перемещений: <math>S = \frac{S_1 + S_2}{2}</math>. Следовательно, <math>{\dot S} = \frac{\dot S_1 + \dot S_2}{2};  \Delta S = \frac{\Delta S_1 + \Delta S_2}{2}</math>
 +
:
 +
Кинетическая энергия всей системы:
 +
:
 +
<math>T = \frac{1}{2}m\dot S_1^{2} + \frac{1}{2}m_1\dot S^{2} + \frac{1}{2}m\dot S_2^{2} = \frac{1}{2}(m(\dot S_1^{2} + \dot S_2^{2}) + \frac{m_1}{4}(\dot S_1 + \dot S_2)^{2})</math>.
 +
:
 +
<math>\frac{\partial T}{\partial\dot S_1} = m\dot S_1 + \frac{m_1}{4}(\dot S_1 + \dot S_2);          \frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_1}\right) = (m + \frac{m_1}{4})\ddot S_1 + \frac{m_1}{4}\ddot S_2;          \frac{\partial T}{\partial S_1} = 0;</math>
 +
:
 +
<math>\frac{\partial T}{\partial\dot S_2} = m\dot S_2 + \frac{m_1}{4}(\dot S_1 + \dot S_2);          \frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_2}\right) = (m + \frac{m_1}{4})\ddot S_2 + \frac{m_1}{4}\ddot S_1;          \frac{\partial T}{\partial S_1} = 0;</math>
 +
:
 +
Найдем сумму работ, действующих на систему:
 +
:
 +
<math>A = m_1g *\Delta S - mg*\Delta S_2 - F_т*\Delta S_1 = g(-fm\Delta S_1 - m\Delta S_2 + m_1\frac{\Delta S_1 + \Delta S_2}{2}) = g((\frac{m_1}{2} - fm)\Delta S_1) + (\frac{m_1}{2}-m)\Delta S_2</math>
 +
:
 +
Отсюда находим обобщённые силы:
 +
<math>Q_1 = g(\frac{m_1}{2} - fm)\Delta S_1);  Q_2 = g(\frac{m_1}{2}-m)\Delta S_2</math>
 +
:
 +
Подставляем найденные величины в уравнения Лагранжа:
 +
:
 +
<math>\frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_1}\right) = (m + \frac{m_1}{4})\ddot S_1 + \frac{m_1}{4}\ddot S_2 = g(\frac{m_1}{2} - fm)\Delta S_1)</math>
 +
<math> \frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_2}\right) = (m + \frac{m_1}{4})\ddot S_2 + \frac{m_1}{4}\ddot S_1 = g(\frac{m_1}{2}-m)\Delta S_2</math>
 +
Сложим уравнения:
 +
:
 +
<math>(m + \frac{m_1}{2})\ddot S_1 + (m + \frac{m_1}{2})\ddot S_2 = g(m_1 - fm - m).</math> И так как <math>{\dot S} = \frac{\dot S_1 + \dot S_2}{2}</math>, то
 +
<math>\ddot S = \frac{1}{2}*\frac{g(m_1 - m(1+f)}{m + \frac{m_1}{2} = g\frac{m_1 - m(1+f)}{2m + m_1}.</math> Это ускорение груза К. Чтобы он опускался вниз, ускорение должно быть отрицательным или <math>m_1 > m(1+f)</math>

Версия 12:16, 23 декабря 2017

Задача 48.26 из сборника задач Мещерского: С помощью языка программирования JavaScript смоделировать систему блоков с грузом.

Формулировка задачи

Однородная нить, к концу которой привязан груз А массы m, огибает неподвижный блок В, охватывает подвижный блок С, поднимается вверх на неподвижный блок D и проходит параллельно горизонтальной плоскости, где к ее концу привязан груз Е массы m. К оси блока С прикреплен прикреплен груз К массы [math]{m_1}[/math]. Коэффициент трения скольжения груза Е о горизонтальную плоскость равен f. При каком условии груз К будет опускаться вниз, если начальные скорости всех грузов равнялись нулю? Найти ускорение груза К. Массами блоков и нити пренебречь.

Решение задачи

Используем уравнение Лагранжа 2-го рода:

[math]\frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_i}\right) - \frac{\partial T}{\partial S_i} = Q_i , (i = 1,2)[/math] , где

T - кинетическая энергия системы
Q - обобщенные силы
S - независимые обобщенные координаты

В данной задаче в качестве обобщенных координат примем расстояния [math]S_1[/math] и [math]S_2[/math]


Представим:

С учётом выбранных направлений перемещений: [math]S = \frac{S_1 + S_2}{2}[/math]. Следовательно, [math]{\dot S} = \frac{\dot S_1 + \dot S_2}{2}; \Delta S = \frac{\Delta S_1 + \Delta S_2}{2}[/math]

Кинетическая энергия всей системы:

[math]T = \frac{1}{2}m\dot S_1^{2} + \frac{1}{2}m_1\dot S^{2} + \frac{1}{2}m\dot S_2^{2} = \frac{1}{2}(m(\dot S_1^{2} + \dot S_2^{2}) + \frac{m_1}{4}(\dot S_1 + \dot S_2)^{2})[/math].

[math]\frac{\partial T}{\partial\dot S_1} = m\dot S_1 + \frac{m_1}{4}(\dot S_1 + \dot S_2); \frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_1}\right) = (m + \frac{m_1}{4})\ddot S_1 + \frac{m_1}{4}\ddot S_2; \frac{\partial T}{\partial S_1} = 0;[/math]

[math]\frac{\partial T}{\partial\dot S_2} = m\dot S_2 + \frac{m_1}{4}(\dot S_1 + \dot S_2); \frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_2}\right) = (m + \frac{m_1}{4})\ddot S_2 + \frac{m_1}{4}\ddot S_1; \frac{\partial T}{\partial S_1} = 0;[/math]

Найдем сумму работ, действующих на систему:

[math]A = m_1g *\Delta S - mg*\Delta S_2 - F_т*\Delta S_1 = g(-fm\Delta S_1 - m\Delta S_2 + m_1\frac{\Delta S_1 + \Delta S_2}{2}) = g((\frac{m_1}{2} - fm)\Delta S_1) + (\frac{m_1}{2}-m)\Delta S_2[/math]

Отсюда находим обобщённые силы: [math]Q_1 = g(\frac{m_1}{2} - fm)\Delta S_1); Q_2 = g(\frac{m_1}{2}-m)\Delta S_2[/math]

Подставляем найденные величины в уравнения Лагранжа:

[math]\frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_1}\right) = (m + \frac{m_1}{4})\ddot S_1 + \frac{m_1}{4}\ddot S_2 = g(\frac{m_1}{2} - fm)\Delta S_1)[/math] [math] \frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_2}\right) = (m + \frac{m_1}{4})\ddot S_2 + \frac{m_1}{4}\ddot S_1 = g(\frac{m_1}{2}-m)\Delta S_2[/math] Сложим уравнения:

[math](m + \frac{m_1}{2})\ddot S_1 + (m + \frac{m_1}{2})\ddot S_2 = g(m_1 - fm - m).[/math] И так как [math]{\dot S} = \frac{\dot S_1 + \dot S_2}{2}[/math], то [math]\ddot S = \frac{1}{2}*\frac{g(m_1 - m(1+f)}{m + \frac{m_1}{2} = g\frac{m_1 - m(1+f)}{2m + m_1}.[/math] Это ускорение груза К. Чтобы он опускался вниз, ускорение должно быть отрицательным или [math]m_1 \gt m(1+f)[/math]