Задача 48.26 из сборника задач Мещерского: С помощью языка программирования JavaScript смоделировать систему блоков с грузом.
Формулировка задачи[править]
Однородная нить, к концу которой привязан груз А массы m, огибает неподвижный блок В, охватывает подвижный блок С, поднимается вверх на неподвижный блок D и проходит параллельно горизонтальной плоскости, где к ее концу привязан груз Е массы m. К оси блока С прикреплен прикреплен груз К массы [math]{m_1}[/math]. Коэффициент трения скольжения груза Е о горизонтальную плоскость равен f. При каком условии груз К будет опускаться вниз, если начальные скорости всех грузов равнялись нулю? Найти ускорение груза К. Массами блоков и нити пренебречь.
Решение задачи[править]
Используем уравнение Лагранжа 2-го рода:
[math]\frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_i}\right) - \frac{\partial T}{\partial S_i} = Q_i , (i = 1,2)[/math] , где
T - кинетическая энергия системы
Q - обобщенные силы
S - независимые обобщенные координаты
В данной задаче в качестве обобщенных координат примем расстояния [math]S_1[/math] и [math]S_2[/math].
С учётом выбранных направлений перемещений: [math]S = \frac{S_1 + S_2}{2}[/math]. Следовательно, [math]{\dot S} = \frac{\dot S_1 + \dot S_2}{2}; \Delta S = \frac{\Delta S_1 + \Delta S_2}{2}[/math]
Кинетическая энергия всей системы:
[math]T = \frac{1}{2}m\dot S_1^{2} + \frac{1}{2}m_1\dot S^{2} + \frac{1}{2}m\dot S_2^{2} = \frac{1}{2}(m(\dot S_1^{2} + \dot S_2^{2}) + \frac{m_1}{4}(\dot S_1 + \dot S_2)^{2})[/math].
Вычислим частные производные:
[math]\frac{\partial T}{\partial\dot S_1} = m\dot S_1 + \frac{m_1}{4}(\dot S_1 + \dot S_2);
\frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_1}\right) = (m + \frac{m_1}{4})\ddot S_1 + \frac{m_1}{4}\ddot S_2;
\frac{\partial T}{\partial S_1} = 0;[/math]
[math]\frac{\partial T}{\partial\dot S_2} = m\dot S_2 + \frac{m_1}{4}(\dot S_1 + \dot S_2);[/math]
[math]\frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_2}\right) = (m + \frac{m_1}{4})\ddot S_2 + \frac{m_1}{4}\ddot S_1;[/math]
[math]\frac{\partial T}{\partial S_1} = 0;[/math]
Найдем сумму работ, действующих на систему:
[math]A = m_1g *\Delta S - mg*\Delta S_2 - F_т*\Delta S_1 = g(-fm\Delta S_1 - m\Delta S_2 + m_1\frac{\Delta S_1 + \Delta S_2}{2}) = g((\frac{m_1}{2} - fm)\Delta S_1) + (\frac{m_1}{2}-m)\Delta S_2[/math]
Отсюда находим обобщённые силы:
[math]Q_1 = g(\frac{m_1}{2} - fm)\Delta S_1;[/math]
[math]Q_2 = g(\frac{m_1}{2}-m)\Delta S_2.[/math]
Подставляем найденные величины в уравнения Лагранжа:
[math]\frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_1}\right) = (m + \frac{m_1}{4})\ddot S_1 + \frac{m_1}{4}\ddot S_2 = g(\frac{m_1}{2} - fm)\Delta S_1[/math]
[math] \frac{d}{dt}\left(\frac{\partial T}{\partial\dot S_2}\right) = (m + \frac{m_1}{4})\ddot S_2 + \frac{m_1}{4}\ddot S_1 = g(\frac{m_1}{2}-m)\Delta S_2[/math]
Сложим уравнения:
[math](m + \frac{m_1}{2})\ddot S_1 + (m + \frac{m_1}{2})\ddot S_2 = g(m_1 - fm - m).[/math]
И так как [math]{\ddot S} = \frac{\ddot S_1 + \ddot S_2}{2}[/math], то [math]\ddot S = \frac{1}{2}*\frac{g(m_1 - m(1+f)}{m + \frac{m_1}{2}} = g\frac{m_1 - m(1+f)}{2m + m_1}.[/math] Это ускорение груза К. Чтобы он опускался вниз, ускорение должно быть отрицательным или [math]m_1 \gt m(1+f)[/math]