Нелинейные колебательные системы — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Аннотация к проекту)
(Постановка задачи)
Строка 19: Строка 19:
 
*Численно решенить данное уравнение с помощью метода Рунге-Кутта 4-го порядка
 
*Численно решенить данное уравнение с помощью метода Рунге-Кутта 4-го порядка
  
 +
 +
==Описание работы программы==
 +
 +
Программа написана c помощью пакета прикладных программ Matlab. С помощью метода Рунге-Кутта 4-го порядка в программе численно находятся значения исследуемого уравнения.Затем программа выводит графики решений данного уравнения и фазовые траектории в зависимости от заданных в функции Calculate начальных условий.
  
  

Версия 11:38, 2 июня 2017

Курсовой проект по информатике

Исполнитель: Лобанов Илья Юрьевич

Группа: 23604/1

Аннотация к проекту

Дано нелинейное дифференциальное уравнение 2-ого порядка: 𝑥 ̈- (ƛ + µ𝑥^(2 )- 𝑥^4)𝑥 ̇ ẍ - (ƛ + µx^2). Необходимо исследовать поведение решения при различных малых значениях ƛ и µ.

Постановка задачи

  • Преобразовать данное уравнение к системе из 2-х ОДУ 1-го порядка в фазовом пространстве
  • Отыскать особые точки системы
  • Линеаризовать систему в окрестности особых точек
  • Определить типы особых точек и поведение решения вблизи этих точек
  • Численно решенить данное уравнение с помощью метода Рунге-Кутта 4-го порядка


Описание работы программы

Программа написана c помощью пакета прикладных программ Matlab. С помощью метода Рунге-Кутта 4-го порядка в программе численно находятся значения исследуемого уравнения.Затем программа выводит графики решений данного уравнения и фазовые траектории в зависимости от заданных в функции Calculate начальных условий.


Описание работы программы File:Нелинейные колебательные системы.pptx Код File:lab5_diff_eq.rar