Цепочка под действием внешней силы — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Egorgor (обсуждение | вклад) (→top) |
Egorgor (обсуждение | вклад) (→Постановка задачи) |
||
Строка 11: | Строка 11: | ||
где <math> {k} </math> - жёсткость одной пружинки, <math> {m} </math> - масса одной частицы, <math> {\bf F}_{n} </math> - сила, действующая на одну из частиц, <math> {\bf r}_{i} </math> - радиус-вектор, направленный к каждой частице. | где <math> {k} </math> - жёсткость одной пружинки, <math> {m} </math> - масса одной частицы, <math> {\bf F}_{n} </math> - сила, действующая на одну из частиц, <math> {\bf r}_{i} </math> - радиус-вектор, направленный к каждой частице. | ||
− | Период одного колебания:<math> {T} = 2{\pi}\sqrt\frac {m}{k} </math> | + | Период одного колебания:<math> {T}_{o} = 2{\pi}\sqrt\frac {m}{k} </math> |
Данное дифференциальное уравнение решалось [https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0 численным методом интегрирования Эйлера]. | Данное дифференциальное уравнение решалось [https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0 численным методом интегрирования Эйлера]. |
Версия 02:38, 20 июня 2016
Виртуальная лаборатория > Цепочка под действием внешней силыПостановка задачи
Рассматриваются продольные и поперечные колебания цепочки, состоящей из материальных точек, соединённых линейными пружинками. На одну из частиц цепочки действует постоянная внешняя сила.
Граничные условия: первая и последняя материальные точки зафиксированы.
Уравнение движения имеет вид:
- ,
где
- жёсткость одной пружинки, - масса одной частицы, - сила, действующая на одну из частиц, - радиус-вектор, направленный к каждой частице.Период одного колебания:
Данное дифференциальное уравнение решалось численным методом интегрирования Эйлера.
Графичекая реализация
Ссылки
- Разработчик: Гордеев Егор
- Виртуальная лаборатория