Динамическая потеря устойчивости дискретного стержня при сжатии — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
Строка 10: Строка 10:
 
==Постановка задачи==
 
==Постановка задачи==
 
[[Файл:Position of sensors.jpg‎|200px|thumb|right|Расположения датчиков. Вид сверху]]
 
[[Файл:Position of sensors.jpg‎|200px|thumb|right|Расположения датчиков. Вид сверху]]
Рассматривается цепочка в двумерном пространстве, состоящая из материальных точек, соединенная линейными и угловыми пружинами (Рис.1)
+
Рассматривается цепочка в двумерном пространстве, состоящая из материальных точек, соединенная линейными и угловыми пружинами (Рис.1)<br>
 
Уравнение движения:  
 
Уравнение движения:  
<math> m\bar{a} = \bar{F_c} + \bar{F_s}</math>
+
<math> m\bar{a} = \bar{F_c} + \bar{F_s} </math>

Версия 14:10, 19 июня 2016

БАКАЛАВРСКАЯ РАБОТА
Автор работы: П. Д. Киселев
Руководитель: зам. зав. кафедры ТМ В. А. Кузькин

Введение

Деформация стержней (колонн, балок) является классической задачей для механики твердых тел. Около пятидесяти последних лет активно изучались упругие системы и связанная с ними динамическая потеря устойчивости, приводящая к разрушениям. Критические нагрузки относятся к наиболее тяжким последствиям природных и техногенных катастроф. Поэтому изучение динамических нагрузок всегда является объектом пристального внимания исследователей.

Постановка задачи

Расположения датчиков. Вид сверху

Рассматривается цепочка в двумерном пространстве, состоящая из материальных точек, соединенная линейными и угловыми пружинами (Рис.1)
Уравнение движения: [math] m\bar{a} = \bar{F_c} + \bar{F_s} [/math]