Курсовые работы по ТОМДЧ: 2013-2014 — различия между версиями
Dainis (обсуждение | вклад) (→Моделирование цепочки частиц, анализ распределения скоростей) |
Dainis (обсуждение | вклад) (→Моделирование цепочки частиц, анализ распределения скоростей) |
||
Строка 48: | Строка 48: | ||
== Моделирование цепочки частиц, анализ распределения скоростей == | == Моделирование цепочки частиц, анализ распределения скоростей == | ||
− | ''' Исполнители:''' | + | ''' Исполнители:''' [[Дзенушко Дайнис]] |
---- | ---- | ||
Рассматривается цепочка частиц с периодичными граничными условиями. Задаются начальные скорости частиц, т.е. вводится начальная температура.<br> | Рассматривается цепочка частиц с периодичными граничными условиями. Задаются начальные скорости частиц, т.е. вводится начальная температура.<br> | ||
+ | Исследуется распределение скоростей частиц от времени. В начальной конфигурации задается равномерное распределение скоростей. | ||
+ | <br><br> | ||
Взаимодействие частиц описывается потенциалом Леннарда-Джонса который записывается в следующем виде:<br> | Взаимодействие частиц описывается потенциалом Леннарда-Джонса который записывается в следующем виде:<br> | ||
<math>U(r) = D \left[ \left(\frac{a}{r}\right)^{12} - \left(\frac{a}{r}\right)^{6} \right],</math><br> | <math>U(r) = D \left[ \left(\frac{a}{r}\right)^{12} - \left(\frac{a}{r}\right)^{6} \right],</math><br> | ||
r — расстояние между центрами частиц<br> | r — расстояние между центрами частиц<br> | ||
D — глубина потенциальной ямы<br> | D — глубина потенциальной ямы<br> | ||
− | a — равновесное расстояние | + | a — равновесное расстояние<br><br> |
− | + | ||
− | <br><br> | + | '''Результаты:'''<br> |
− | Результаты:<br> | ||
* 20000 частиц, без диссипаций, радиус обрезания a_cut = 1.4 a0, максимальные начальные скорости v0 = 0.5 * vo / 6 <br> | * 20000 частиц, без диссипаций, радиус обрезания a_cut = 1.4 a0, максимальные начальные скорости v0 = 0.5 * vo / 6 <br> |
Версия 12:40, 23 января 2014
Предмет: "Теоретические основы метода динамики частиц"
Лектор: Виталий Андреевич Кузькин
Группа: 40510
Учебный год: 2013-2014
Семестр: осень 2013
Моделирование распространения поперечных волн в двумерном стрежне
Исполнители:: Степанов Алексей
Рассматривается стержень, имеющий толщину в 1 атом. Взаимодействие между атомами, находящимися на расстоянии меньшем, чем радиус обрезания, описывается законом
Здесь,
— жесткость связи, — радиус-вектор, соединяющий частицы и равновесное расстояние. Радиус обрезания в работе выбран: .Было смоделировано несколько различных задач:
- Отражение волны от свободного конца
- Отражение волны от заделанного конца
- Распространение волны без дисперсии
- Распространение волны с дисперсией
Во всех этих задачах, граничный условия на другом конце выглядели так:
Результаты:
- Отражение волны от свободного конца
- Отражение волны от заделанного конца
- Распространение волны с дисперсией
- Соударение двух встречных волн
Моделирование цепочки частиц, анализ распределения скоростей
Исполнители: Дзенушко Дайнис
Рассматривается цепочка частиц с периодичными граничными условиями. Задаются начальные скорости частиц, т.е. вводится начальная температура.
Исследуется распределение скоростей частиц от времени. В начальной конфигурации задается равномерное распределение скоростей.
Взаимодействие частиц описывается потенциалом Леннарда-Джонса который записывается в следующем виде:
r — расстояние между центрами частиц
D — глубина потенциальной ямы
a — равновесное расстояние
Результаты:
- 20000 частиц, без диссипаций, радиус обрезания a_cut = 1.4 a0, максимальные начальные скорости v0 = 0.5 * vo / 6
- 20000 частиц, с диссипацией B = 2.6 * Bo / 100, радиус обрезания a_cut = 1.4 a0, максимальные начальные скорости v0 = 0.5 * vo / 6