Уравнение состояния Ми-Грюнайзена — различия между версиями
Kuzkin (обсуждение | вклад) (→Функция Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе) |
Kuzkin (обсуждение | вклад) (→Холодная кривая для потенциалов Леннарда-Джонса, Ми, Морзе) |
||
Строка 33: | Строка 33: | ||
== Холодная кривая для потенциалов Леннарда-Джонса, Ми, Морзе == | == Холодная кривая для потенциалов Леннарда-Джонса, Ми, Морзе == | ||
− | * | + | В случае учета только взаимодействий между ближайшими соседями холодная кривая имеет вид. |
+ | |||
+ | * '''Холодная кривая для потенциала Леннарда-Джонса:''' | ||
<math> | <math> | ||
\varPi(r) =D\left[\left(\frac{a}{r}\right)^{12}-2\left(\frac{a}{r}\right)^{6}\right], ~~~~ p_0 = \frac{6MD}{dV_0\theta^{d}}(\theta^{-12}-\theta^{-6}) | \varPi(r) =D\left[\left(\frac{a}{r}\right)^{12}-2\left(\frac{a}{r}\right)^{6}\right], ~~~~ p_0 = \frac{6MD}{dV_0\theta^{d}}(\theta^{-12}-\theta^{-6}) | ||
Строка 39: | Строка 41: | ||
− | * | + | * '''Холодная кривая для потенциала Ми:''' |
<math> | <math> | ||
\varPi(r) =\frac{D}{n-m} \left[m\left(\frac{a}{r}\right)^{n}-n\left(\frac{a}{r}\right)^{m} \right], ~~~~ | \varPi(r) =\frac{D}{n-m} \left[m\left(\frac{a}{r}\right)^{n}-n\left(\frac{a}{r}\right)^{m} \right], ~~~~ | ||
Строка 45: | Строка 47: | ||
</math> | </math> | ||
− | * | + | * '''Холодная кривая для потенциала Морзе:''' |
<math> | <math> | ||
\varPi(r) = D\left[e^{2\alpha(a-r)}-2e^{\alpha(a-r)}\right], ~~~~ | \varPi(r) = D\left[e^{2\alpha(a-r)}-2e^{\alpha(a-r)}\right], ~~~~ |
Версия 02:16, 11 декабря 2013
Содержание
- 1 Основной источник
- 2 Уравнение состояния Ми-Грюнайзена
- 3 Уравнение состояния для кристаллов простой структуры
- 4 Холодная кривая для потенциалов Леннарда-Джонса, Ми, Морзе
- 5 Коэффициент Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе
- 6 Функция Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе
- 7 Статьи
- 8 Ссылки
Основной источник
Материал данной статьи более подробно и полно изложен в публикации Кривцов А. М., Кузькин В. А. Получение уравнения состояния идеальных кристаллов простой структуры // Механика твёрдого тела. — 2011. — № 3. (English translation: A.M. Krivtsov, V.A. Kuzkin, Derivation of Equations of State for Ideal Crystals of Simple Structure // Mech. Solids. 46 (3), 387-399 (2011)
Уравнение состояния Ми-Грюнайзена
При больших давлениях и температурах принято представлять давление
в конденсированном веществе в виде суммы "холодной" и "тепловой" компонент:
Холодная компонента, часто называемая "холодной кривой" (cold curve), обусловлена деформированием кристаллической решетки, а вторая - тепловыми колебаниями атомов. Иными словами, холодное давление зависит только от объема, а тепловое - от объема и тепловой энергии
:
Тепловая энергия - часть внутренней энергии твердого тела, обусловленная тепловым движением атомов. В первом приближении тепловая энергия равна
. На практике часто предполагается линейная связь теплового давления и тепловой энергии:
Данное уравнение называют уравнением состояния Ми-Грюнайзена, а функцию
- функцией Грюнайзена. Значение функции Грюнайзена в недеформированном состоянии тела называют коэффициентом Грюнайзена.
Уравнение состояния для кристаллов простой структуры
где
- номер координационной сферы, - их число, - число атомов на -ой координационной сфере, - радиус координационной сферы, - безразмерные константы решетки, - радиус первой координационной сферы в отсчетном положении, .
Холодная кривая для потенциалов Леннарда-Джонса, Ми, Морзе
В случае учета только взаимодействий между ближайшими соседями холодная кривая имеет вид.
- Холодная кривая для потенциала Леннарда-Джонса:
- Холодная кривая для потенциала Ми:
- Холодная кривая для потенциала Морзе:
Здесь
- энергия связи, - длина связи, - параметр, характеризующий ширину потенциальной ямы; - параметры потенциала Ми.Коэффициент Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе
Выражение для параметра Грюнайзена для идеальных кристаллов с парными взаимодействиями в пространстве размерности
имеет вид:
где
- потенциал межатомного взаимодействия, - равновесное расстояние, - размерность пространства. Связь параметра Грюнайзена с параметрами потенциалов Леннарда-Джонса, Ми и Морзе представлена в таблице.решетка | размерность пространства | Потенциал Леннарда-Джонса | Потенциал Ми | Потенциал Морзе |
---|---|---|---|---|
Цепочка | ||||
Треугольная решетка | ||||
ГЦК, ОЦК | ||||
"Гиперрешетка" | ||||
Общая формула |
Функция Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе
В случае учета только взаимодействий между ближайшими соседями функция Грюнайзена имеет вид.
- Функция Грюнайзена для потенциала Леннарда-Джонса:
- Функция Грюнайзена для потенциала Ми:
- Функция Грюнайзена для потенциала Морзе:
Статьи
- Кривцов А. М., Кузькин В. А. Получение уравнения состояния идеальных кристаллов простой структуры // Механика твёрдого тела. — 2011. — № 3.