Цепочка под действием внешней силы — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Постановка задачи)
Строка 7: Строка 7:
  
 
::<math>
 
::<math>
\ddot{\bf u}_{n} = {\omega}_{0}^2({\bf u}_{n+1}-2{\bf u}_{n+1} + {\bf u}_{n-1}),
+
{\m}\ddot{\bf u}_{n} = {\omega}_{0}^2({\bf u}_{n+1}-2{\bf u}_{n+1} + {\bf u}_{n-1}),
 
</math>
 
</math>
  
Строка 15: Строка 15:
  
 
Данное дифференциальное уравнение решалось [https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0 численным методом интегрирования Эйлера]
 
Данное дифференциальное уравнение решалось [https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0 численным методом интегрирования Эйлера]
 
  
 
==Графичекая реализация==
 
==Графичекая реализация==

Версия 01:14, 20 июня 2016

Виртуальная лаборатория>Цепочка с чередующимися массами

Постановка задачи

Рассматриваются продольные и поперечные колебания цепочки, состоящей из материальных точек, соединённых линейными пружинками. На одну из частиц цепочки действует постоянная внешняя сила. Уравнение движения имеет вид:


[math] {\m}\ddot{\bf u}_{n} = {\omega}_{0}^2({\bf u}_{n+1}-2{\bf u}_{n+1} + {\bf u}_{n-1}), [/math]


где [math] {\bf u}[/math] - перемещение, [math]{\omega}_{0} =\sqrt\frac {\bf c}{\bf m} [/math], [math] {\bf c}[/math] - жёсткость пружинок, [math] {\bf m}[/math] - масса частиц.

Данное дифференциальное уравнение решалось численным методом интегрирования Эйлера

Графичекая реализация

Ссылки