Уравнение состояния Ми-Грюнайзена — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
м
 
(не показано 6 промежуточных версий 3 участников)
Строка 1: Строка 1:
 +
[[ТМ|Кафедра ТМ]] > [[Научный справочник]] > [[Механика]] > [[Механика дискретных сред | МДС]] > [[Уравнение состояния Ми-Грюнайзена]]
 +
 
[[Mie–Gruneisen equation of state | for English press here]]
 
[[Mie–Gruneisen equation of state | for English press here]]
  
 
== Основной источник ==
 
== Основной источник ==
Материал данной статьи более подробно и полно изложен в публикации '''Кривцов А. М., Кузькин В. А. [[Медиа: Krivtsov_2011_MTT.pdf | Получение уравнения состояния идеальных кристаллов простой структуры]] // Механика твёрдого тела. 2011. — № 3.''' (English translation: A.M. Krivtsov, V.A. Kuzkin, [[Медиа: Krivtsov_2011_MechSol.pdf | Derivation of Equations of State for Ideal Crystals of Simple Structure]] // Mech. Solids. 46 (3), 387-399 (2011))
+
 
 +
Материал данной статьи более подробно и полно изложен в публикации  
 +
* [[Кривцов А.М.]], [[Кузькин В.А.]] '''Получение уравнений состояния идеальных кристаллов простой структуры''' // ''[http://mtt.ipmnet.ru/ru/ Известия РАН. Механика твердого тела]''. 2011, № 3, c. 67-82. ([http://mtt.ipmnet.ru/ru/Issues.php?y=2011&n=3&p=67 Аннотация], скачать pdf: [[Медиа:Krivtsov_2011_MTT.pdf|499 Kb]])
 +
:''English translation:'' Krivtsov A.M., Kuzkin V.A. '''Derivation of Equations of State for Ideal Crystals of Simple Structure''' // ''Mech. Solids.'' 46 (3), 387-399 (2011) (Download pdf: [[Медиа:Krivtsov_2011_MechSol.pdf‎|529 Kb]])
  
 
== Уравнение состояния Ми-Грюнайзена ==
 
== Уравнение состояния Ми-Грюнайзена ==
Строка 17: Строка 22:
 
<math> p = p_0(V) + \frac{\varGamma(V)}{V} E_T</math>
 
<math> p = p_0(V) + \frac{\varGamma(V)}{V} E_T</math>
  
Данное уравнение называют '''уравнением состояния Ми-Грюнайзена''', а функцию  <math>\varGamma(V)</math> - '''функцией Грюнайзена'''. Значение <math> \varGamma_0 </math>функции Грюнайзена в недеформированном состоянии тела называют '''коэффициентом Грюнайзена'''.  
+
Данное уравнение называют '''уравнением состояния Ми-Грюнайзена''', а функцию  <math>\varGamma(V)</math> - '''функцией Грюнайзена'''. Значение <math> \varGamma_0 </math> функции Грюнайзена в недеформированном состоянии тела называют '''коэффициентом Грюнайзена'''.  
  
 
<math> \varGamma_0 = \varGamma(V_0)</math>
 
<math> \varGamma_0 = \varGamma(V_0)</math>
Строка 30: Строка 35:
 
где <math>k</math> - номер координационной сферы, <math>n</math> - их число, <math>N_k</math> - число атомов на <math>k</math>-ой координационной сфере, <math> A_k = \rho_k R \theta</math> - радиус координационной сферы, <math> \rho_k=A_k/A_1 </math> - безразмерные константы решетки, <math>R</math> - радиус первой координационной сферы в отсчетном положении, <math>\varPhi^{(n)}_k = \varPhi^{(n)}(A_k^2)</math>.
 
где <math>k</math> - номер координационной сферы, <math>n</math> - их число, <math>N_k</math> - число атомов на <math>k</math>-ой координационной сфере, <math> A_k = \rho_k R \theta</math> - радиус координационной сферы, <math> \rho_k=A_k/A_1 </math> - безразмерные константы решетки, <math>R</math> - радиус первой координационной сферы в отсчетном положении, <math>\varPhi^{(n)}_k = \varPhi^{(n)}(A_k^2)</math>.
  
 +
== Холодная кривая для потенциалов Леннард-Джонса, Ми, Морзе ==
  
== Холодная кривая для потенциалов Леннарда-Джонса, Ми, Морзе ==
+
В случае учета только взаимодействий между ближайшими соседями холодная кривая имеет вид.
  
* Потенциал Леннарда-Джонса:
+
* '''Холодная кривая для потенциала Леннард-Джонса:'''
 
<math>
 
<math>
 
  \varPi(r) =D\left[\left(\frac{a}{r}\right)^{12}-2\left(\frac{a}{r}\right)^{6}\right], ~~~~ p_0 = \frac{6MD}{dV_0\theta^{d}}(\theta^{-12}-\theta^{-6})
 
  \varPi(r) =D\left[\left(\frac{a}{r}\right)^{12}-2\left(\frac{a}{r}\right)^{6}\right], ~~~~ p_0 = \frac{6MD}{dV_0\theta^{d}}(\theta^{-12}-\theta^{-6})
 
</math>
 
</math>
  
 
+
* '''Холодная кривая для потенциала Ми:'''
* Потенциал Ми
 
 
<math>
 
<math>
 
   \varPi(r) =\frac{D}{n-m} \left[m\left(\frac{a}{r}\right)^{n}-n\left(\frac{a}{r}\right)^{m} \right], ~~~~
 
   \varPi(r) =\frac{D}{n-m} \left[m\left(\frac{a}{r}\right)^{n}-n\left(\frac{a}{r}\right)^{m} \right], ~~~~
Строка 45: Строка 50:
 
</math>
 
</math>
  
* Потенциал Морзе
+
* '''Холодная кривая для потенциала Морзе:'''
 
<math>
 
<math>
 
   \varPi(r) = D\left[e^{2\alpha(a-r)}-2e^{\alpha(a-r)}\right], ~~~~
 
   \varPi(r) = D\left[e^{2\alpha(a-r)}-2e^{\alpha(a-r)}\right], ~~~~
Строка 53: Строка 58:
 
Здесь <math>D</math> - энергия связи, <math>a</math> - длина связи, <math>\alpha</math> - параметр, характеризующий ширину потенциальной ямы; <math>m, n</math> - параметры потенциала Ми.
 
Здесь <math>D</math> - энергия связи, <math>a</math> - длина связи, <math>\alpha</math> - параметр, характеризующий ширину потенциальной ямы; <math>m, n</math> - параметры потенциала Ми.
  
== Коэффициент Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе ==  
+
== Коэффициент Грюнайзена для потенциалов Леннард-Джонса, Ми, Морзе ==  
  
 
Выражение для параметра Грюнайзена для идеальных кристаллов с парными взаимодействиями в пространстве размерности  <math>d</math> имеет вид:
 
Выражение для параметра Грюнайзена для идеальных кристаллов с парными взаимодействиями в пространстве размерности  <math>d</math> имеет вид:
Строка 61: Строка 66:
 
</math>
 
</math>
  
где <math>\Pi</math> - потенциал межатомного взаимодействия, <math>a</math> - равновесное расстояние, <math>d</math> - размерность пространства. Связь параметра Грюнайзена с параметрами потенциалов Леннарда-Джонса, Ми и Морзе представлена в таблице.
+
где <math>\Pi</math> - потенциал межатомного взаимодействия, <math>a</math> - равновесное расстояние, <math>d</math> - размерность пространства. Связь параметра Грюнайзена с параметрами потенциалов Леннард-Джонса, Ми и Морзе представлена в таблице.
  
 
{|class="wikitable"
 
{|class="wikitable"
Строка 67: Строка 72:
 
!решетка
 
!решетка
 
!размерность пространства  
 
!размерность пространства  
!Потенциал Леннарда-Джонса
+
!Потенциал Леннард-Джонса
 
!Потенциал Ми
 
!Потенциал Ми
 
!Потенциал Морзе
 
!Потенциал Морзе
Строка 103: Строка 108:
 
|}
 
|}
  
== Функция Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе ==  
+
== Функция Грюнайзена для потенциалов Леннард-Джонса, Ми, Морзе ==  
  
* Потенциал Леннарда-Джонса:
+
В случае учета только взаимодействий между ближайшими соседями функция Грюнайзена имеет вид.
 +
 
 +
* '''Функция Грюнайзена для потенциала Леннард-Джонса''':
 
<math>
 
<math>
 
   \varGamma = \frac{1}{d}\frac{4(8-d)\theta^{6}-7(14-d)}{(8-d)\theta^{6}-(14-d)}.
 
   \varGamma = \frac{1}{d}\frac{4(8-d)\theta^{6}-7(14-d)}{(8-d)\theta^{6}-(14-d)}.
 
</math>
 
</math>
  
 
+
* '''Функция Грюнайзена для потенциала Ми:'''
* Потенциал Ми
 
 
<math>
 
<math>
 
     \varGamma = \frac{1}{2d}\frac{(n+2)(n-d+2)\theta^{m-n}-(m+2)(m-d+2)}{(n-d+2)\theta^{m-n}-(m-d+2)}.
 
     \varGamma = \frac{1}{2d}\frac{(n+2)(n-d+2)\theta^{m-n}-(m+2)(m-d+2)}{(n-d+2)\theta^{m-n}-(m-d+2)}.
 
</math>
 
</math>
  
 
+
* '''Функция Грюнайзена для потенциала Морзе:'''
* Потенциал Морзе
 
 
<math>
 
<math>
 
\varGamma = \frac{1}{2d}\frac{e^{\alpha a(1-\theta)}\left(4\alpha^2a^2\theta^2-2d_1\alpha a
 
\varGamma = \frac{1}{2d}\frac{e^{\alpha a(1-\theta)}\left(4\alpha^2a^2\theta^2-2d_1\alpha a
Строка 125: Строка 130:
 
<math>d_1 = d-1,~~</math> <math>\theta=(V/V_0)^{1/d}</math>
 
<math>d_1 = d-1,~~</math> <math>\theta=(V/V_0)^{1/d}</math>
  
 +
== Статьи ==
  
 
+
* [[Кривцов А.М.]], [[Кузькин В.А.]] '''Получение уравнений состояния идеальных кристаллов простой структуры''' // [http://mtt.ipmnet.ru/ru/ ''Известия РАН. Механика твердого тела'']. 2011, № 3, c. 67-82. ([http://mtt.ipmnet.ru/ru/Issues.php?y=2011&n=3&p=67 Аннотация], скачать pdf: Рус. [[Медиа:Krivtsov_2011_MTT.pdf|499 Kb]], Eng. [[Медиа:Krivtsov_2011_MechSol.pdf‎|529 Kb]])
 
 
== Статьи ==
 
* Кривцов А. М., Кузькин В. А. Получение уравнения состояния идеальных кристаллов простой структуры // Механика твёрдого тела. 2011. — № 3.
 
  
 
== Ссылки ==
 
== Ссылки ==

Текущая версия на 20:42, 10 мая 2014

Кафедра ТМ > Научный справочник > Механика > МДС > Уравнение состояния Ми-Грюнайзена

for English press here

Основной источник[править]

Материал данной статьи более подробно и полно изложен в публикации

English translation: Krivtsov A.M., Kuzkin V.A. Derivation of Equations of State for Ideal Crystals of Simple Structure // Mech. Solids. 46 (3), 387-399 (2011) (Download pdf: 529 Kb)

Уравнение состояния Ми-Грюнайзена[править]

При больших давлениях и температурах принято представлять давление [math]p[/math] в конденсированном веществе в виде суммы "холодной" и "тепловой" компонент:

[math]p = p_0 + p_T, ~~~~ p_T = p - p_0[/math]

Холодная компонента, часто называемая "холодной кривой" (cold curve), обусловлена деформированием кристаллической решетки, а вторая - тепловыми колебаниями атомов. Иными словами, холодное давление зависит только от объема, а тепловое - от объема и тепловой энергии [math] E_T [/math]:

[math]p = p_0(V) + p_T(V,E_T)[/math]

Тепловая энергия - часть внутренней энергии твердого тела, обусловленная тепловым движением атомов. В первом приближении тепловая энергия равна [math] c_V T [/math]. На практике часто предполагается линейная связь теплового давления и тепловой энергии:

[math] p = p_0(V) + \frac{\varGamma(V)}{V} E_T[/math]

Данное уравнение называют уравнением состояния Ми-Грюнайзена, а функцию [math]\varGamma(V)[/math] - функцией Грюнайзена. Значение [math] \varGamma_0 [/math] функции Грюнайзена в недеформированном состоянии тела называют коэффициентом Грюнайзена.

[math] \varGamma_0 = \varGamma(V_0)[/math]

Уравнение состояния для кристаллов простой структуры[править]

[math] p_0 = \frac{1}{2V_0d\theta^d}\sum_{k=1}^n N_k\varPhi_k A_k^2,~~~~\varGamma = -\frac{\sum_{k=1}^n N_k((d+2)\varPhi'_k A_k^2 + 2\varPhi''_k A_k^4 )}{d\sum_{k=1}^n N_k (d\varPhi_k +2\varPhi'_k A_k^2)} [/math]

где [math]k[/math] - номер координационной сферы, [math]n[/math] - их число, [math]N_k[/math] - число атомов на [math]k[/math]-ой координационной сфере, [math] A_k = \rho_k R \theta[/math] - радиус координационной сферы, [math] \rho_k=A_k/A_1 [/math] - безразмерные константы решетки, [math]R[/math] - радиус первой координационной сферы в отсчетном положении, [math]\varPhi^{(n)}_k = \varPhi^{(n)}(A_k^2)[/math].

Холодная кривая для потенциалов Леннард-Джонса, Ми, Морзе[править]

В случае учета только взаимодействий между ближайшими соседями холодная кривая имеет вид.

  • Холодная кривая для потенциала Леннард-Джонса:

[math] \varPi(r) =D\left[\left(\frac{a}{r}\right)^{12}-2\left(\frac{a}{r}\right)^{6}\right], ~~~~ p_0 = \frac{6MD}{dV_0\theta^{d}}(\theta^{-12}-\theta^{-6}) [/math]

  • Холодная кривая для потенциала Ми:

[math] \varPi(r) =\frac{D}{n-m} \left[m\left(\frac{a}{r}\right)^{n}-n\left(\frac{a}{r}\right)^{m} \right], ~~~~ p_0 =\frac{m n MD}{2d(n-m)V_0\theta^{d}}\left(\theta^{-n}-\theta^{-m}\right) [/math]

  • Холодная кривая для потенциала Морзе:

[math] \varPi(r) = D\left[e^{2\alpha(a-r)}-2e^{\alpha(a-r)}\right], ~~~~ p_0 = \frac{\alpha a MD}{d V_0\theta^{d-1}} \left[e^{2\alpha a(1-\theta)}-e^{\alpha a(1-\theta)}\right] [/math]

Здесь [math]D[/math] - энергия связи, [math]a[/math] - длина связи, [math]\alpha[/math] - параметр, характеризующий ширину потенциальной ямы; [math]m, n[/math] - параметры потенциала Ми.

Коэффициент Грюнайзена для потенциалов Леннард-Джонса, Ми, Морзе[править]

Выражение для параметра Грюнайзена для идеальных кристаллов с парными взаимодействиями в пространстве размерности [math]d[/math] имеет вид:

[math] \varGamma_0 = -\frac{1}{2d}\frac{\varPi'''(a)a^2 + (d-1)\left[\varPi''(a)a - \varPi'(a)\right]}{\varPi''(a)a + (d-1)\varPi'(a)} [/math]

где [math]\Pi[/math] - потенциал межатомного взаимодействия, [math]a[/math] - равновесное расстояние, [math]d[/math] - размерность пространства. Связь параметра Грюнайзена с параметрами потенциалов Леннард-Джонса, Ми и Морзе представлена в таблице.

решетка размерность пространства Потенциал Леннард-Джонса Потенциал Ми Потенциал Морзе
Цепочка [math] d=1 [/math] [math]10\frac{1}{2} [/math] [math]\frac{m+n+3}{2}[/math] [math]\frac{3\alpha a}{2}[/math]
Треугольная решетка [math]d=2 [/math] [math]5[/math] [math] \frac{m+n+2}{4}[/math] [math] \frac{3\alpha a - 1}{4}[/math]
ГЦК, ОЦК [math]d=3 [/math] [math]\frac{19}{6} [/math] [math]\frac{n+m+1}{6}[/math] [math]\frac{3\alpha a-2}{6}[/math]
"Гиперрешетка" [math]d=\infty[/math] [math]-\frac{1}{2}[/math] [math]-\frac{1}{2}[/math] [math]-\frac{1}{2}[/math]
Общая формула [math]d[/math] [math]\frac{11}{d}-\frac{1}{2}[/math] [math]\frac{m+n+4}{2d}-\frac{1}{2}[/math] [math]\frac{3\alpha a + 1}{2d}-\frac{1}{2}[/math]

Функция Грюнайзена для потенциалов Леннард-Джонса, Ми, Морзе[править]

В случае учета только взаимодействий между ближайшими соседями функция Грюнайзена имеет вид.

  • Функция Грюнайзена для потенциала Леннард-Джонса:

[math] \varGamma = \frac{1}{d}\frac{4(8-d)\theta^{6}-7(14-d)}{(8-d)\theta^{6}-(14-d)}. [/math]

  • Функция Грюнайзена для потенциала Ми:

[math] \varGamma = \frac{1}{2d}\frac{(n+2)(n-d+2)\theta^{m-n}-(m+2)(m-d+2)}{(n-d+2)\theta^{m-n}-(m-d+2)}. [/math]

  • Функция Грюнайзена для потенциала Морзе:

[math] \varGamma = \frac{1}{2d}\frac{e^{\alpha a(1-\theta)}\left(4\alpha^2a^2\theta^2-2d_1\alpha a \theta-d_1\right)-\left(\alpha^2 a^2\theta^2-d_1\alpha a\theta-d_1 \right)}{e^{\alpha a(1-\theta)}(2\alpha a\theta-d_1) -(\alpha a\theta-d_1)},~~ [/math] [math]d_1 = d-1,~~[/math] [math]\theta=(V/V_0)^{1/d}[/math]

Статьи[править]

Ссылки[править]