Моделирование течения воздуха в крупных воздухоносных путях человека методом конечных элементов
БАКАЛАВРСКАЯ РАБОТА
Автор работы: Д. В. Богданов
Руководитель: аспирант кафедры ТМ О. В. Бразгина
Содержание
Введение[править]
В настоящее время известны процессы протекающие в органах, однако, недостаточно сведений для полного понимания возникновения и протекания этих процессов. Компьютерное моделирование является одним из наиболее перспективных методов исследования. Компьютерное моделирование дает возможность варьирования параметров для лучшего понимания процессов, например течения легких в бронхах.
Цель работы[править]
Моделирование крупных воздухоносных путей человека методом конечных элементов
Задачи дипломной работы:[править]
- изучить строение крупных воздухоносных путей человека – бронхов;
- выбрать подходящий тип модели турбулентности;
- получить поле скоростей, поле давлений и поле температур
Строение крупных воздухоносных путей человека[править]
Крупные воздухоносные пути человека состоят из:трахеи и бронхов. Длина трахеи составляет в среднем 11 —11,6 см, поперечный диаметр 1,2 – 1,8 см. Угол разветвления трахеи — 55° (40—65°). Длина правого главного бронха — 2,3 см (1,5 — 3,5 см). Длина левого главного бронха — 4,3 см (3—6 см). Крупные бронхи имеют диаметр 10-15 мм. Средние диаметром от 2 до 5 мм. Малые бронхи имеют диаметр 1-2 мм, бронхиолы – 0,5 мм.
Механика дыхания[править]
Один цикл чередования вдоха и выдоха составляет дыхательный акт. В среднем за минуту человек совершает 12-15 дыхательных актов. Обычно вдох несколько короче выдоха, у человека их соотношение примерно 1:1,2-1,5. Средняя скорость воздуха при вдохе – 3,2 м/с; при выдохе – 2,8 м/с. Вдох и выдох обеспечиваются дыхательными движениями грудной клетки и диафрагмы. В процессе вдоха, давление в альвеолах падает на 98 Па, и туда движется воздух. При выдохе все наоборот, в альвеолах создается избыточное давление и воздух по бронхам и трахеи движется обратно во внешнюю среду
Постановка задачи[править]
Рассматривается процесс вдоха-выдоха. Будем ставить граничные условия в соответствии с реальными бронхами:
И начальные условия:
предполагаем, что в начальное время воздуха в легких нет, т.е. нет течения: м/с. Так же будем считать, что давление в легких равно нормальному атмосферному давлению: Па. Температура равна температуре человеческого тела: C.
Полученные результаты[править]
Поле скоростей[править]
По анализу изменения поля скоростей во времени видно, что с уменьшением диаметра бронхов скорость возрастает. Наибольшая скорость возникает в мелких бронхах и соответственно в альвеолах.
Поле давлений[править]
Анализируя полученные результаты изменения давления в точках можем прийти к выводу – полученное поле давлений является верным. Данный вывод делаю из того, что при вдохе давление в альвеолах падает на 98 Па, и является самым низким (синяя линия). Далее идет точка P2, в которой давление больше. Воздух будет течь от точки с более высоким давлением в точку с более низким. Давление в точке P1 (черная линия) самое высокое, соответственно воздух будет течь от P1 в точку P2 далее к «альвеолам» (точка Bound). Аналогичное, только обратное будет происходить в обратном порядке: от «альвеол» воздух будет течь в точку P2, далее в точку P1, что соответствует реальному выдоху.
Поле температур[править]
Анализируя полученные результаты распределения температуры: при вдыхании с увеличением скорости потока уменьшается температура в рассматриваемой точке, при уменьшении скорости потока поток прогревается сильнее. При выдохе – весь воздух прогрет, и поток имеет одинаковую температуру.
Вывод[править]
Полученными результатами стали:
- поле скоростей;
- поле давлений;
- поле температур;
Полученные результаты могут быть использованы:
- для исследования оседания частиц в легких (мелкодисперсная пыль аэрозоли);
- моделирования полностью легких, включая альвеолы, как пороупругий материал;
- при создании искусственных легких.
Материалы работы[править]
Список литературы[править]
- Белебезьев, Г.И., Козяр, В.В.. Физиология и патофизиология искусственной вентиляции легких. Часть I - Ника-Центр, Киев, 2003
- Белов, И.А., Исаев, С.А. Моделирование турбулентных течений Учеб. пособие. – СПб.: Балт. гос. техн. ун-т, 2001. –108 с.
- Березовский, В.А., Колотилов, Н.Н. Биофизические характеристики тканей человека. Справочник. Киев, 1990.
- Варламов, В.А., Варламов, Г.В., Власова, Н.М., Зубрилова, И.С., Котомин, М.Б. Углубленные кадровые проверки М. 2003
- Гарбарук, А.В. Моделирование турбулентности в расчетах сложных течений: учебное пособие / А.В. Гарбарук, М.Х. Стрелец, М.Л. Шур – СПб: Изд-во Политехн. ун-та, 2012. – 88 с.
- Злыгостев, А.С., Марченко, Т.О. Анатомия и физиология человека /Авторы-составители: Злыгостев А.С., Марченко Т.О. - Таганрог: http://anfiz.ru/, 2012
- Книпович, Н. М. Бронхи Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Лагунова, И.Г. Трахео-бронхиальное дерево человека в период его роста (Анатомо-рентгенологическое исследование) / И.Г. Лагунова // Нарушения бронхиальной проходимости. — М., 1946. — С. 210.
- Лойцянский, Л.Г. Механика жидкости и газа. - 7-е изд., испр. - М.: Дрофа, 2003. - 840 с.
- Лукомский, Г.И. Атлас бронхоскопии / Г. И. Лукомский, В. А. Спасская. - М. : Медучпособие, 1965. - 90 с.
- Неттер, Ф. Атлас анатомии человека: Уч. пос.-атлас / Под ред. Н.О. Бартоша; Пер. с англ. А.П. Киясова. – м.: гэотар-мед, 2003.
- Орлов, Р.С. Нормальная физиология / Р.С. Орлов, А.Д. Ноздрачев.- М: ГЭОТАР-МЕД, 2005.
- Роуч, П. Вычислительная гидродинамика. – М.: Мир, 1980. – 616с.
- Сапин, М.Р. Анатомия человека, 2-х томах. М.: «Медицина», 2003 . – 992 с
- Флетчер, К. Вычислительные методы в динамике жидкостей: В 2-х томах: Т. 1 и 2: Пер. с англ. – М.: Мир, 1991. – 504 с.
- Devdatta, V.K.Katiyar, Pratibha, Sarita. Numerical simulation of flow structure and deposition of particles in Asthematic Airway Bifurcation/ Department of Mathematics, Indian Institute of Technology Roorkee, Uttrakhand, India, 2012.
- Gihad Ibrahim. CFD models of the bronchial airways with dynamic boundaries/ Department of Engineering University of Leicester, Leicester, England, 2014.
- ANSYS CFX-Solver Theory Guide ANSYS, Inc. 2009
- http://cae-expert.ru/product/ansys-cfx
- http://cae-club.ru
- http://www.ansys.com/