Колебания в цилиндрической поверхности (48.12)

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск

Формулировка задачи[править]

Составить уравнение движения материальной точки, движущейся под влиянием силы тяжести по циклоидальной направляющей, заданной уравнением s = a*sin φ

Решение[править]

Для решения поставленной задачи воспользуемся уравнением Лагранжа 2-го рода


[math]\frac{d}{dt}\left(\frac{\partial T}{\partial\dot q_i}\right) - \frac{\partial T}{\partial q_i} = - \frac{\partial \Pi}{\partial q_i} [/math] , где

T - кинетическая энергия системы
П - потенциальная энергия системы
q - независимые обобщенные координаты

Скорость материальной точки определяется первой производной пути по времени (уравнение пути нам задано в условии). Дальше с помощью уравнения Лагранжа мы найдём частные производные. Найдем обобщённую силу и подставим найденные нами значения в уравнение Лагранжа с учётом данной нам зависимости пути и получим искомый ответ.


Скорость мат. точки [math]\dot{s}=\frac{d(4aSinφ)}{dt}=4a\dot{φ}Cosφ[/math]

уравнение Лагранжа [math]\frac{d}{dt}\left(\frac{\partial T}{\partial\dot q_i}\right) - \frac{\partial T}{\partial q_i} = - \frac{\partial \Pi}{\partial q_i} [/math]

Используемые библиотеки[править]

Для моделирования колебаний данного маятника используется язык программирования JavaScript и следующие библиотеки:

  • three.js
  • dat.gui.js
  • stats.js
  • ​OrbitControls.js

Визуализация[править]