Heat transfer in a 1D harmonic crystal — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Macroscopic equations)
Строка 35: Строка 35:
 
{{oncolor||#00ff00|—}} Wave (d’Alembert): <math>\ddot T = c^2 T''</math> [https://en.wikipedia.org/wiki/Wave_equation]
 
{{oncolor||#00ff00|—}} Wave (d’Alembert): <math>\ddot T = c^2 T''</math> [https://en.wikipedia.org/wiki/Wave_equation]
  
{{oncolor||blue|—}} Reversible (Krivtsov): <math>\ddot T +\frac1t\dot T = c^2 T''</math>
+
{{oncolor||blue|—}} Reversible (Krivtsov): <math>\ddot T +\frac1t\dot T = c^2 T''</math> [http://arxiv.org/abs/1509.02506]
  
 
Notations:
 
Notations:

Версия 23:42, 25 сентября 2015

Виртуальная лаборатория > Heat transfer in a 1D harmonic crystal


Theory: A.M. Krivtsov, published at arXiv:1509.02506 (cond-mat.stat-mech)

Programming: D.V. Tsvetkov

Model

We consider a one-dimensional crystal, described by the following equations of motion:

[math] \ddot{u}_i = \omega_0^2(u_{i-1}-2u_i+u_{i+1}) ,\qquad \omega_0 = \sqrt{C/m}, [/math]

where [math]u_i[/math] is the displacement of the [math]i[/math]th particle, [math]m[/math] is the particle mass, [math]C[/math] is the stiffness of the interparticle bond. The crystal is infinite: the index [math]i[/math] is an arbitrary integer. The initial conditions are

[math] u_i|_{t=0} = 0 ,\qquad \dot u_i|_{t=0} = \sigma(x)\varrho_i , [/math]

where [math]\varrho_i[/math] are independent random values with zero expectation and unit variance; [math]\sigma[/math] is variance of the initial velocities of the particles, which is a slowly varying function of the spatial coordinate [math]x=ia[/math], where [math]a[/math] is the lattice constant. These initial conditions correspond to an instantaneous temperature perturbation, which can be induced in crystals, for example, by an ultrashort laser pulse.

Macroscopic equations

Heat (Fourier): [math]\dot T = \beta T''[/math] [1]

Heat wave (MCV): [math]\ddot T +\frac1\tau\dot T = \frac\beta\tau T''[/math]

Wave (d’Alembert): [math]\ddot T = c^2 T''[/math] [2]

Reversible (Krivtsov): [math]\ddot T +\frac1t\dot T = c^2 T''[/math] [3]

Notations: [math]t[/math] is time (variable), [math]\tau[/math] is the relaxation time (constant), [math]\beta[/math] is the thermal diffusivity, [math]\kappa[/math] is the thermal conductivity, [math]c[/math] is the sound speed, [math]\rho[/math] is the density, MCV stands for Maxwell-Cattaneo-Vernotte.